给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。
示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释:
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]
思路一:使用额外的数组
设置一个新的数组,然后把原本数组下标i的数值移动到新数组的下标i+k(移动步数)的地方,然后复制过来。
整体代码:
class Solution {
public void rotate(int[] nums, int k) {
int[] newArray = new int[nums.length];
for(int i = 0; i < nums.length; i++){
newArray[(i + k) % nums.length] = nums[i];
}
System.arraycopy(newArray,0,nums,0,nums.length);
}
}
System.arraycopy:
对于一维数组来说,这种复制属性值传递,修改副本不会影响原来的值。对于二维或者一维数组中存放的是对象时,复制结果是一维的引用变量传递给副本的一维数组,修改副本时,会影响原来的数组。
public static native void arraycopy(Object src, int srcPos,Object dest, int destPos,int length);
//src表示源数组,srcPos表示源数组要复制的起始位置,desc表示目标数组,length表示要复制的长度。
(i + k) % nums.length
如果k大于nums.length,就是个循环,要取余数
举个例子,比较容易想,例如,1,2,3,4,5,6,7 如果右移动15次的话,是 7 1 2 3 4 5 6 。所以其实就是右移 k % nums.length() 次,即:15 % 7 = 1
思路二:数组翻转
取余后的k值,就是向右移动的位数, 关键就在于把这个k代表的概念从“移动的位数”转变到“最右边的k位”被移到了最左, 再继续推导,也同时意味着靠左边的n-k位数,被移到了靠右,很显然,不考虑两段的内部顺序,整体翻转就可以达到这一点。 再继续推导,整体翻转后,确实已经帮助最右边k位和左边n-k达成位置互换,但此时内部的顺序经过一次翻转形成了倒序排列,此时各自再逆序回来,就得到了结果。
整体代码:
class Solution {
public void rotate(int[] nums, int k) {
k %= nums.length;
reverse(nums,0,nums.length-1);
reverse(nums,0,k-1);
reverse(nums,k,nums.length-1);
}
private void reverse(int[] nums,int start,int end){
while(start < end){
int temp = nums[start];
nums[start] = nums[end];
nums[end] = temp;
start++;
end--;
}
}
}
官方解释:
该方法基于如下的事实:当我们将数组的元素向右移动 k 次后,尾部 k%n 个元素会移动至数组头部,其余元素向后移动 k%n 个位置。
该方法为数组的翻转:我们可以先将所有元素翻转,这样尾部的 k%n 个元素就被移至数组头部,然后我们再翻转 [0,k%n−1] 区间的元素和 [k%n,n−1] 区间的元素即能得到最后的答案。