**
A - 签到题
**
题目描述
东东有一个字符串X,该串包含偶数个字符,一半是 S 字符,一半是 T 字符
东东可以对该字符串执行 1010000 次操作:如果存在 ST 是该串的子串,则删除掉最左边的 ST。
即 TSTTSS⇒TTSS、SSSTTT⇒SSTT⇒ST⇒空
Input
(2 ≦ |X| ≦ 200,000)
Sample Input
TSTTSS
Sample Output
4
解题思路
定义两个相邻索引l和r,如果str[l]和str[r]分别为S和T,则将这两个字符从字符串中删除,然后将两个索引都前移一位,如果两字符不满足条件,就将索引后移,遍历字符串中所有字符后输出剩下的字符串大小。
C++代码
#include<iostream>
#include<string>
using namespace std;
int main()
{
string str;
cin>>str;
int sum=str.length();
int l=0,r=1;
while(r<str.length())
{
if(str[l]=='S'&&str[r]=='T')
{
str.erase(l,2);
sum=sum-2;
l--,r--;
}
else
{
l++,r++;
}
}
cout<<sum<<endl;
return 0;
}
**
B - 东东转魔方
**
题目描述
东东有一个二阶魔方,即2×2×2的一个立方体组。立方体由八个角组成。
魔方的每一块都用三维坐标(h, k, l)标记,其中h, k, l∈{0,1}。六个面的每一个都有四个小面,每个小面都有一个正整数。
对于每一步,东东可以选择一个特定的面,并把此面顺时针或逆时针转90度。
请你判断,是否东东可以在一个步骤还原这个魔方(每个面没有异色)。
Input
输入的第一行包含一个整数N(N≤30),这是测试用例的数量。
对于每个测试用例,
第 1~4 个数描述魔方的顶面,这是常见的2×2面,由(0,0,1),(0,1,1),(1,0,1),(1,1,1)标记。四个整数对应于上述部分。
第 5~8 个数描述前面,即(1,0,1),(1,1,1),(1,0,0),(1,1,0)的公共面。四个整数
与上述各部分相对应。
第 9~12 个数描述底面,即(1,0,0),(1,1,0),(0,0,0),(0,1,0)的公共面。四个整数与上述各部分相对应。
第 13~16 个数描述背面,即(0,0,0),(0,1,0),(0,0,1),(0,1),(0,1,1)的公共面。四个整数与上述各部分相对应。
第 17~20 个数描述左面,即(0,0,0),(0,0,1),(1,0,0),(1,0,1)的公共面。给出四个整数与上述各部分相对应。
第 21~24 个数描述了右面,即(0,1,1),(0,1,0),(1,1,1),(1,1,0)的公共面。给出四个整数与上述各部分相对应。
换句话说,每个测试用例包含24个整数a、b、c到x。你可以展开表面以获得平面图
如下所示。
+ - + - + - + - + - + - +
| q | r | a | b | u | v |
+ - + - + - + - + - + - +
| s | t | c | d | w | x |
+ - + - + - + - + - + - +
| e | f |
+ - + - +
| g | h |
+ - + - +
| i | j |
+ - + - +
| k | l |
+ - + - +
| m | n |
+ - + - +
| o | p |
+ - + - +
Output
对于每个测试用例,魔方如果可以至多 “只转一步” 恢复,输出YES,则输出NO。
友情提示:如果能思考一下解题框架的设计是最好的,一上来就莽很痛苦
友情提示:如果能思考一下解题框架的设计是最好的,一上来就莽很痛苦
友情提示:如果能思考一下解题框架的设计是最好的,一上来就莽很痛苦
Sample Input
4
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
6 6 6 6 1 1 1 1 2 2 2 2 3 3 3 3 5 5 5 5 4 4 4 4
1 4 1 4 2 1 2 1 3 2 3 2 4 3 4 3 5 5 5 5 6 6 6 6
1 3 1 3 2 4 2 4 3 1 3 1 4 2 4 2 5 5 5 5 6 6 6 6
Sample Output
YES
YES
YES
NO
解题思路
直接了当折一个魔方,标上序号,分类讨论。
定义一个数组存放输入数据,定义六个set集合存放每个面出现的序号,如果set的大小为1,表示这个面的数字都相等。能够一步恢复的情况首先要满足有两个对面对应的set大小为1,然后侧面两种旋转情况,同样将定义集合判断每种旋转后是否满足每个面的数组均相同即可。
遇到的问题
一共提交代码提交了10次代码,怎么该都是WA,结果问题出在初始化上,我是用一个数组存放输入数据,在每次输入一组数据前将数组的值全部置为0,结果去掉这个初始化就过了。。。
C++代码
#include<iostream>
#include<cstring>
#include<set>
using namespace std;
int a[30];
set<int> s[7];
set<int> sl[4];
set<int> sr[4];
void judge()
{
if(s[1].size()==1&&s[3].size()==1)//上下同色
{
sl[0].insert(a[5]),sl[0].insert(a[6]),sl[0].insert(a[17]),sl[0].insert(a[19]);
sl[1].insert(a[21]),sl[1].insert(a[23]),sl[1].insert(a[7]),sl[1].insert(a[8]);
sl[2].insert(a[15]),sl[2].insert(a[16]),sl[2].insert(a[22]),sl[2].insert(a[24]);
sl[3].insert(a[18]),sl[3].insert(a[20]),sl[3].insert(a[13]),sl[3].insert(a[14]);
sr[0].insert(a[5]),sr[0].insert(a[6]),sr[0].insert(a[22]),sr[0].insert(a[24]);
sr[1].insert(a[21]),sr[1].insert(a[23]),sr[1].insert(a[13]),sr[1].insert(a[14]);
sr[2].insert(a[15]),sr[2].insert(a[16]),sr[2].insert(a[17]),sr[2].insert(a[19]);
sr[3].insert(a[18]),sr[3].insert(a[20]),sr[3].insert(a[7]),sr[3].insert(a[8]);
if((sl[0].size()==1&&sl[1].size()==1&&sl[2].size()==1&&sl[3].size()==1)||(sr[0].size()==1&&sr[1].size()==1&&sr[2].size()==1&&sr[3].size()==1))
{
cout<<"YES"<<endl;
return;
}
else
{
cout<<"NO"<<endl;
return;
}
}
else if(s[2].size()==1&&s[4].size()==1)//前后同色
{
sl[0].insert(a[1]),sl[0].insert(a[2]),sl[0].insert(a[19]),sl[0].insert(a[20]);
sl[1].insert(a[21]),sl[1].insert(a[22]),sl[1].insert(a[3]),sl[1].insert(a[4]);
sl[2].insert(a[11]),sl[2].insert(a[12]),sl[2].insert(a[23]),sl[2].insert(a[24]);
sl[3].insert(a[17]),sl[3].insert(a[18]),sl[3].insert(a[9]),sl[3].insert(a[10]);
sr[0].insert(a[1]),sr[0].insert(a[2]),sr[0].insert(a[23]),sr[0].insert(a[24]);
sr[1].insert(a[21]),sr[1].insert(a[22]),sr[1].insert(a[9]),sr[1].insert(a[10]);
sr[2].insert(a[11]),sr[2].insert(a[12]),sr[2].insert(a[19]),sr[2].insert(a[20]);
sr[3].insert(a[17]),sr[3].insert(a[18]),sr[3].insert(a[3]),sr[3].insert(a[4]);
if((sl[0].size()==1&&sl[1].size()==1&&sl[2].size()==1&&sl[3].size()==1)||(sr[0].size()==1&&sr[1].size()==1&&sr[2].size()==1&&sr[3].size()==1))
{
cout<<"YES"<<endl;
return;
}
else
{
cout<<"NO"<<endl;
return;
}
}
else if(s[5].size()==1&&s[6].size()==1)//左右同色
{
sl[0].insert(a[1]),sl[0].insert(a[3]),sl[0].insert(a[6]),sl[0].insert(a[8]);
sl[1].insert(a[5]),sl[1].insert(a[7]),sl[1].insert(a[10]),sl[1].insert(a[12]);
sl[2].insert(a[9]),sl[2].insert(a[11]),sl[2].insert(a[14]),sl[2].insert(a[16]);
sl[3].insert(a[13]),sl[3].insert(a[15]),sl[3].insert(a[2]),sl[3].insert(a[4]);
sr[0].insert(a[1]),sr[0].insert(a[3]),sr[0].insert(a[14]),sr[0].insert(a[16]);
sr[1].insert(a[5]),sr[1].insert(a[7]),sr[1].insert(a[2]),sr[1].insert(a[4]);
sr[2].insert(a[9]),sr[2].insert(a[11]),sr[2].insert(a[6]),sr[2].insert(a[8]);
sr[3].insert(a[13]),sr[3].insert(a[15]),sr[3].insert(a[10]),sr[3].insert(a[12]);
if((sl[0].size()==1&&sl[1].size()==1&&sl[2].size()==1&&sl[3].size()==1)||(sr[0].size()==1&&sr[1].size()==1&&sr[2].size()==1&&sr[3].size()==1))
{
cout<<"YES"<<endl;
return;
}
else
{
cout<<"NO"<<endl;
return;
}
}
else
{
cout<<"NO"<<endl;
return;
}
}
int main()
{
int n=0;
cin>>n;
for(int time=0;time<n;time++)
{
for(int i=0;i<7;i++) s[i].clear();
for(int i=0;i<4;i++) sl[i].clear(),sr[i].clear();
int index=1;
for(int i=1;i<=6;i++)
{
for(int j=1;j<=4;j++)
{
cin>>a[index];
s[i].insert(a[index]);
index++;
}
}
if(s[1].size()==1&&s[2].size()==1&&s[3].size()==1&&s[4].size()==1&&s[5].size()==1&&s[6].size()==1)
{
cout<<"YES"<<endl;
continue;
}
judge();
}
return 0;
}