之前写过一篇对大型csv文件进行拆分的文章
使用python对csv文件进行拆分
本来用着还挺顺手,直到最近在工作里,需要拆分七八百万行的csv文件,用原来的那套逻辑,居然要跑一个多小时,未免有些太慢了,于是就改用pandas
处理,只需要两分钟就可以搞定
- 首先是导入库和确定文件路径
import pandas as pd
import datetime
start_time = datetime.datetime.now() # 获取程序开始时间
path = r'D:\需要处理的文件.csv'
result_path_dir = r'D:\拆分后的输出文件路径' #输出文件的路径
这里设置start_time
是为了获取程序开始执行的时间,在程序结束的时候,可以方便查看这套逻辑总共运行了多久
2. 读取csv文件
data = pd.read_csv(path,encoding='GBK',dtype = str)
read_csv
可以有很多参数,但在这次需求里,只需要目标文件、目标文件格式和字段类型就可以,本来这里是没加dtype
参数的,但后来导出数据时,发现数字会变成科学计数法,不利于业务方使用,于是就可以在读取数据的时候,直接限制每个字段都是str
类型,就可以避免这个问题
多说一句,目标文件我是从dbeaver
导出来的,按默认导出方式,也会出现科学计数法的情况,可以通过更改配置的方式避免,这里也一并记录一下,把分隔符由默认的,
改为\t,