Spark专题-第三部分:性能监控与实战优化(2)-分区优化

IT疑难杂症诊疗室 10w+人浏览 113人参与

这一篇不同于之前理论层面的讲解,会直接引入前段时间在工作中发现的问题,并配上思路和解决办法

问题回顾

事情的起因是一个批处理作业,在9月24号当天疯狂报错,原本凌晨就该结束的作业愣是拖到晚上
在这里插入图片描述

日志探查

那很自然会想到查看日志,找找报错的原因,这里就会通过之前提到的spark ui查看,也很自然的就能找到图中所提示的报错信息
在这里插入图片描述

Failure Reason: Job aborted due to stage failure
Task 1 in stage 46.0 failed 4 times
Reason: Couldn't form a bad node; couldn't: ASI, Y15450404805, 1654378, Q0_00043
compute-node-ZR1002T7.mm-sgps.com
Error code: I4E

这种类型的报错通常属于网络通信资源管理类问题

网络通信错误
节点间连接超时
防火墙/安全组限制
DNS解析失败
网络分区
executor与driver失联
端口被阻止
主机名无法解析
集群节点隔离
resource_issues = [
    "内存不足导致GC overhead",
    "磁盘空间耗尽",
    "CPU资源竞争激烈", 
    "网络带宽瓶颈",
    "容器资源限制触发"
]

但如果是网络原因,不会只有这一个作业异常,于是我们便初步怀疑是资源不足导致的,而这些猜想需要继续通过spark ui找证据。
因为作业是通过提交spark sql的方式提交,所以我们当时想知道是哪段sql导致的报错,于是便去查看了SQL/DataFrame菜单,找到失败的语句
在这里插入图片描述
一路顺着数据流程往下找,发现了两个可疑的地方

  • 14个亿的数据量,却只安排了2个partition处理,累死也算不出来
  • 到sort算子部分就停止了
    那此时的问题可能就出现在,用很少的分区去对极大的数据量进行排序,导致资源不足,出现报错
    在这里插入图片描述

sql验证

当从日志里找出这些蛛丝马迹后,就该看看实际执行的sql能否和这些猜想对应上

where day between today(-2) and today(-1)
cluster by  day 

从执行的sql里,我们发现了这样一句,每天会更新最近2天的数据,所以day值只会有2个,而cluster by day 这句就是罪魁祸首了,将14亿的数据按2个day分组,调用sort算子,导致资源不足作业失败

性能优化

定位问题后,一切就好解决了,直接将最后一句改成

DISTRIBUTE BY day, ceil(rand() * 100) 

虽然还是2个day,但通过ceil(rand() * 100) 起到稀释加盐的作用,将数据打散,优化后再查看日志就会发现这里的分区数已经变大,作业也就顺利执行完成
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟意昶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值