conda创建tensorflow虚拟环境
conda创建环境的意义
意义:使用Anaconda会有一个最基础base的环境,里面包含着一些最基础的库包以及你选择的Python的版本,在深度学习上不同的库对应着不同的python版本,如果一直在base环境上进行操作就会导致版本不匹配的问题,最后代码运行失败。因此我们就要创建虚拟环境,往虚拟环境里配置我们所需要的python版本和一些库包的版本。
conda创建环境的流程
在这里我们以python版本为3.6,tensorflow1.11版本为例
1.打开Anaconda Prompt,创建环境
前面括号里提示你所在的位置,base表示最基础的环境,在这里我们创建一个新环境
conda create -n tensorflow python=3.6.8
其中conda create -n为默认的,tensorflow表示你要创建的环境的名字,后面是python的版本,安装完成提示结果如下:
我们可以使用conda activate tensorflow来进入该环境
前面括号里(tensorflow)表明我们已经进入到创建的环境中。
2.查看python是否安装成功及环境里的库包
在环境中输入pip list可以查看该环境下包含的库包,输入python -V可以查看环境的版本。
python -V
pip list
结果示意图如下:
通过结果可以看出我们成功的安装了python3.6.8,但库包中不含有tensorflow,只有几个必须的库,因此我们需要在该环境下继续安装tensorflow
3. 在环境中安装tensorflow
在环境中输入以下代码进行tensorflow的安装
pip install tensorflow_gpu==1.11.0
尽量不要安装高版本,很多代码都是基于低版本的tensorflow进行编写的,过高的tensorflow对一些代码的调用进行了更新,容易出错。
下载过慢时可以使用清华镜像进行下载
pip install tensorflow_gpu==1.11.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/
安装成功示意图如下:
4. 检验tensorflow是否安装成功
在命令行中输入python进行编写代码
python
进入到代码编写界面,逐行输入下列代码检验是否安装成功
import tensorflow as tf
a=tf.constant([1.0,2.0,3.0],shape=[3],name='a')
b=tf.constant([1.0,2.0,3.0],shape=[3],name='b')
c=a+b
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print(sess.run(c))
输入结果则表示安装成功
结语
安装好环境后,即可在pycharm中进行使用,不要在最基础的环境上面进行安装,会出现很多版本不一致的问题!