conda创建tensorflow环境

conda创建tensorflow虚拟环境

conda创建环境的意义

意义:使用Anaconda会有一个最基础base的环境,里面包含着一些最基础的库包以及你选择的Python的版本,在深度学习上不同的库对应着不同的python版本,如果一直在base环境上进行操作就会导致版本不匹配的问题,最后代码运行失败。因此我们就要创建虚拟环境,往虚拟环境里配置我们所需要的python版本和一些库包的版本。

conda创建环境的流程

在这里我们以python版本为3.6,tensorflow1.11版本为例

1.打开Anaconda Prompt,创建环境

前面括号里提示你所在的位置,base表示最基础的环境,在这里我们创建一个新环境

conda create -n tensorflow python=3.6.8

其中conda create -n为默认的,tensorflow表示你要创建的环境的名字,后面是python的版本,安装完成提示结果如下:
在这里插入图片描述
我们可以使用conda activate tensorflow来进入该环境
前面括号表示已经进入到创建的
前面括号里(tensorflow)表明我们已经进入到创建的环境中。

2.查看python是否安装成功及环境里的库包

在环境中输入pip list可以查看该环境下包含的库包,输入python -V可以查看环境的版本。

python -V
pip list

结果示意图如下:
在这里插入图片描述
通过结果可以看出我们成功的安装了python3.6.8,但库包中不含有tensorflow,只有几个必须的库,因此我们需要在该环境下继续安装tensorflow

3. 在环境中安装tensorflow

在环境中输入以下代码进行tensorflow的安装

pip install tensorflow_gpu==1.11.0

尽量不要安装高版本,很多代码都是基于低版本的tensorflow进行编写的,过高的tensorflow对一些代码的调用进行了更新,容易出错。
下载过慢时可以使用清华镜像进行下载

pip install tensorflow_gpu==1.11.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/

安装成功示意图如下:
在这里插入图片描述

4. 检验tensorflow是否安装成功

在命令行中输入python进行编写代码

python

在这里插入图片描述
进入到代码编写界面,逐行输入下列代码检验是否安装成功

import tensorflow as tf
a=tf.constant([1.0,2.0,3.0],shape=[3],name='a')
b=tf.constant([1.0,2.0,3.0],shape=[3],name='b')
c=a+b
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print(sess.run(c))

输入结果则表示安装成功

结语

安装好环境后,即可在pycharm中进行使用,不要在最基础的环境上面进行安装,会出现很多版本不一致的问题!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值