region的拆分策略

文章介绍了HBase中region的切分策略,包括ConstantSizeRegionSplitPolicy、IncreasingToUpperBoundRegionSplitPolicy、SteppingSplitPolicy等,分析了各种策略对大表和小表的影响,以及如何适应不同场景。
摘要由CSDN通过智能技术生成

region中存储的是一张表的数据,当region中的数据条数过多的时候,会直接影响查询效率。当region过大的时候,region会被拆分为两个region,HMaster会将分裂的region分配到不同的regionserver上,这样可以让请求分散到不同的RegionServer上,已达到负载均衡 , 这也是HBase的一个优点

region的拆分策略

1. ConstantSizeRegionSplitPolicy:0.94版本前,HBase region的默认切分策略

当region中最大的store大小超过某个阈值(hbase.hregion.max.filesize=10G)之后就会触发切分,一个region等分为2个region。
但是在生产线上这种切分策略却有相当大的弊端(切分策略对于大表和小表没有明显的区分):
- 阈值(hbase.hregion.max.filesize)设置较大对大表比较友好,但是小表就有可能不会触发分裂,极端情况下可能就1个,形成热点,这对业务来说并不是什么好事。
- 如果设置较小则对小表友好,但一个大表就会在整个集群产生大量的region,这对于集群的管理、资源使用、failover来说都不是一件好事。

2. IncreasingToUpperBoundRegionSplitPolicy:0.94版本~2.0版本默认切分策略

总体看和ConstantSizeRegionSplitPolicy思路相同,一个region中最大的store大小大于设置阈值就会触发切分。 但是这个阈值并不像ConstantSizeRegionSplitPolicy是一个固定的值,而是会在一定条件下不断调整,调整规则和region所属表在当前regionserver上的region个数有关系.
region split阈值的计算公式是:
- 设regioncount:是region所属表在当前regionserver上的region的个数
- 阈值 = regioncount^3 * 128M * 2,当然阈值并不会无限增长,最大不超过MaxRegionFileSize(10G),当region中最大的store的大小达到该阈值的时候进行region split
例如:
- 第一次split阈值 = 1^3 * 256 = 256MB
- 第二次split阈值 = 2^3 * 256 = 2048MB
- 第三次split阈值 = 3^3 * 256 = 6912MB
- 第四次split阈值 = 4^3 * 256 = 16384MB > 10GB,因此取较小的值10GB
- 后面每次split的size都是10GB了
特点
- 相比ConstantSizeRegionSplitPolicy,可以自适应大表、小表;
- 在集群规模比较大的情况下,对大表的表现比较优秀
- 对小表不友好,小表可能产生大量的小region,分散在各regionserver上
- 小表达不到多次切分条件,导致每个split都很小,所以分散在各个regionServer上

3. SteppingSplitPolicy:2.0版本默认切分策略

相比 IncreasingToUpperBoundRegionSplitPolicy 简单了一些  region切分的阈值依然和待分裂region所属表在当前regionserver上的region个数有关系
- 如果region个数等于1,切分阈值为flush size 128M * 2
- 否则为MaxRegionFileSize。
这种切分策略对于大集群中的大表、小表会比 IncreasingToUpperBoundRegionSplitPolicy 更加友好,小表不会再产生大量的小region,而是适可而止。

4. KeyPrefixRegionSplitPolicy

根据rowKey的前缀对数据进行分区,这里是指定rowKey的前多少位作为前缀,
比如rowKey都是16位的,指定前5位是前缀,那么前5位相同的rowKey在相同的region中

5. DelimitedKeyPrefixRegionSplitPolicy

保证相同前缀的数据在同一个region中,例如rowKey的格式为:userid_eventtype_eventid,指定的delimiter为 _ ,则split的的时候会确保userid相同的数据在同一个region中。 按照分隔符进行切分,而KeyPrefixRegionSplitPolicy是按照指定位数切分

6. BusyRegionSplitPolicy

按照一定的策略判断Region是不是Busy状态,如果是即进行切分
如果你的系统常常会出现热点Region,而你对性能有很高的追求,
那么这种策略可能会比较适合你。它会通过拆分热点Region来缓
解热点Region的压力,但是根据热点来拆分Region也会带来很多
不确定性因素,因为你也不知道下一个被拆分的Region是哪个

7. DisabledRegionSplitPolicy:不启用自动拆分, 需要指定手动拆分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值