本文是在读了Roman Vershynin的 High-Dimensional Probability之后根据自己的理解整理的。
首先简单的说一下集中不等式是研究什么的,然后给出一个例子说明为什么要发展集中不等式这套工具。
集中不等式是量化随机变量 X 偏离其均值 的程度。一般是以下形式:
最简单的集中不等式是 Chebyshev 不等式, (可由Markov不等式直接得出)
(Chebyshev inequation)随机变量 X, 均值
,方差
,
, 有
![]()
但Chebyshev 不等式是一个很一般的结论,在有些情况下太弱。
下面给出一个例子说明通过中心极限定理分析随机变量的集中性时,利用正态分布来近似的近似误差不能忽略。
Q1:投掷一枚均匀的硬币N次,求至少出现
次正面的概率?