(一)为什么要研究集中不等式(concentration inequalities)

本文探讨了集中不等式在概率论中的应用,通过对比Chebyshev不等式和中心极限定理,指出在分析随机变量集中性时,中心极限定理的近似误差不可忽略。文章通过投掷硬币的例子,展示了Hoeffding不等式如何提供更精确的指数衰减概率估计,强调了发展集中不等式作为分析工具的必要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是在读了Roman Vershynin的 High-Dimensional Probability之后根据自己的理解整理的。

首先简单的说一下集中不等式是研究什么的,然后给出一个例子说明为什么要发展集中不等式这套工具。

集中不等式是量化随机变量 X 偏离其均值 \mu 的程度。一般是以下形式:

\mathbb{P}\{|X-\mu|>t\}\leq something\text{ } small

最简单的集中不等式是 Chebyshev 不等式,  (可由Markov不等式直接得出)

(Chebyshev inequation)随机变量 X, 均值\mu,方差 \sigma^2\forall t>0, 有 \mathbb{P}\{|X-\mu|>t\}\leq \frac{\sigma^2}{t^2}   

但Chebyshev 不等式是一个很一般的结论,在有些情况下太弱。

下面给出一个例子说明通过中心极限定理分析随机变量的集中性时,利用正态分布来近似的近似误差不能忽略。

 Q1:投掷一枚均匀的硬币N次,求至少出现\frac{3}{4}N次正面的概率?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值