【机器学习】-----PCA(主成分分析)

PCA(Principal Component Analysis) 是一种常见的数据分析方式,常用于高维数据的降维,可用于提取数据的主要特征分量。

1. 向量表示与基变换

我们先来介绍些线性代数的基本知识。

1.1 内积

两个向量的 A 和 B 内积我们知道形式是这样的:

 

内积运算将两个向量映射为实数,其计算方式非常容易理解,但我们无法看出其物理含义。接下来我们从几何角度来分析,为了简单起见,我们假设 A 和 B 均为二维向量,则:

 

其几何表示见下图:

我们看出 A 与 B 的内积等于 A 到 B 的投影长度乘以 B 的模。

如果假设 B 的模为 1,即让 |B| = 1 ,那么就变成了:

1.2 基

在我们常说的坐标系种,向量 (3,2) 其实隐式引入了一个定义:以 x 轴和 y 轴上正方向长度为 1 的向量为标准。向量 (3,2) 实际是说在 x 轴投影为 3 而 y 轴的投影为 2。注意投影是一个标量,所以可以为负。

所以,对于向量 (3, 2) 来说,如果我们想求它在 (1,0),(0,1)处这组基下的坐标的话,分别内积即可。当然,内积完了还是 (3, 2)。

所以,我们大致可以得到一个结论,我们要准确描述向量,首先要确定一组基,然后给出在基所在的各个直线上的投影值,就可以了。为了方便求坐标,我们希望这组基向量模长为 1。因为向量的内积运算,当模长为 1 时,内积可以直接表示投影。然后还需要这组基是线性无关的,我们一般用正交基,非正交的基也是可以的,不过正交基有较好的性质。

1.3 基变换的矩阵表示

其中 Pi 是一个行向量,表示第 i 个基,  是一个列向量,表示第 j 个原始数据记录。实际上也就是做了一个向量矩阵化的操作。

上述分析给矩阵相乘找到了一种物理解释:两个矩阵相乘的意义是将右边矩阵中的每一列向量 ai 变换到左边矩阵中以每一行行向量为基所表示的空间中去。也就是说一个矩阵可以表示一种线性变换。

2. 最大可分性

上面我们讨论了选择不同的基可以对同样一组数据给出不同的表示,如果基的数量少于向量本身的维数,则可以达到降维的效果。

但是我们还没回答一个最关键的问题:如何选择基才是最优的。或者说,如果我们有一组 N 维向量,现在要将其降到 K 维(K 小于 N),那么我们应该如何选择 K 个基才能最大程度保留原有的信息?

一种直观的看法是:希望投影后的投影值尽可能分散,因为如果重叠就会有样本消失。当然这个也可以从熵的角度进行理解,熵越大所含信息越多。

2.1 方差

 我们知道数值的分散程度,可以用数学上的方差来表述。一个变量的方差可以看做是每个元素与变量均值的差的平方和的均值,即:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

~风凌天下~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值