特殊微分方程的数值解——刚性微分方程(ode15s)

我们在微分方程的标准型转换中已经提到的Van der Pol方程就是一种刚性微分方程。

刚性微分方程可能有几个状态变量,其中某个状态变量变化的特别快,远远的快于其他的状态变量,这样就会使得常规算法中,选择步长出现问题。

再谈Van der Pol方程:

在这里插入图片描述
计算mu=1000时的Van der Pol方程的数值解。

h_opt=odeset;
h_opt.RelTol=1e-6;
x0=[2;0];
t_final=3000;
f=@(t,x,mu)[x(2);-mu*(x(1)^2-1)*x(2)-x(1)];
tic,mu=1000;
[t,y]=ode15s(f,[0,t_final],x0,h_opt,mu);toc
plot(t,y(:,1));figure;plot(t,y(:,2))
  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我了您的问题。常微分方程数值是一个很常见的问题,MATLAB提供了很多内置函数来决这个问题。其中,欧拉法、改进的欧拉法和四阶龙格库塔方法是常用的数值法。下面我会给您简要介绍一下这几种方法在MATLAB中的实现。 首先,我们需要定义一个函数来描述我们要决的常微分方程。例如,我们要求y'=f(t,y),我们可以在MATLAB中定义一个函数如下: ```matlab function dydt = myode(t,y) dydt = f(t,y); % f为描述y'的函数 end ``` 接下来,我们可以使用MATLAB的内置函数来求微分方程。其中,欧拉法可以使用odeEuler函数实现,代码如下: ```matlab y0 = y(1); % 初始值 t0 = 0; % 初始时间 tf = 10; % 求的终止时间 h = 0.1; % 步长 tspan = t0:h:tf; % 时间区间 y = zeros(length(tspan),1); % 存储 y(1) = y0; for i = 1:length(tspan)-1 y(i+1) = y(i) + h*myode(tspan(i),y(i)); end ``` 改进的欧拉法可以使用odeHeun函数实现,代码如下: ```matlab y0 = y(1); % 初始值 t0 = 0; % 初始时间 tf = 10; % 求的终止时间 h = 0.1; % 步长 tspan = t0:h:tf; % 时间区间 y = zeros(length(tspan),1); % 存储 y(1) = y0; for i = 1:length(tspan)-1 k1 = myode(tspan(i),y(i)); k2 = myode(tspan(i+1),y(i)+h*k1); y(i+1) = y(i) + h/2*(k1+k2); end ``` 四阶龙格库塔方法可以使用ode45函数实现,代码如下: ```matlab y0 = y(1); % 初始值 t0 = 0; % 初始时间 tf = 10; % 求的终止时间 [t,y] = ode45(@myode,[t0,tf],y0); ``` 以上就是常微分方程数值欧拉matlab的简要介绍,希望对您有所帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值