特殊微分方程的数值解——刚性微分方程(ode15s)

我们在微分方程的标准型转换中已经提到的Van der Pol方程就是一种刚性微分方程。

刚性微分方程可能有几个状态变量,其中某个状态变量变化的特别快,远远的快于其他的状态变量,这样就会使得常规算法中,选择步长出现问题。

再谈Van der Pol方程:

在这里插入图片描述
计算mu=1000时的Van der Pol方程的数值解。

h_opt=odeset;
h_opt.RelTol=1e-6;
x0=[2;0];
t_final=3000;
f=@(t,x,mu)[x(2);-mu*(x(1)^2-1)*x(2)-x(1)];
tic,mu=1000;
[t,y]=ode15s(f,[0,t_final],x0,h_opt,mu);toc
plot(t,y(:,1));figure;plot(t,y(:,2))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值