数学分形之复牛顿迭代法

本文探讨了复牛顿迭代法在创建分形艺术中的应用,使用了Easy Graphics Engine (EGE)作为绘图库,并展示了用C++编程实现的不同迭代公式,如z=z^3-1, z=z^4-1, z=sin(z), z=z^6-1等,生成的分形图形展现了数学的美妙和复杂性。" 115090123,10540692,微信小程序WebSocket聊天功能实现,"['微信小程序', 'WebSocket', 'Java开发', '实时交互', '前端开发']
摘要由CSDN通过智能技术生成

复牛顿迭代法

绘图库:Easy Graphics Engine (EGE)
编程语言:c++
z=z^3-1
在这里插入图片描述
z=z^4-1
在这里插入图片描述
z=sin(z)
在这里插入图片描述
z=z^6-1
在这里插入图片描述
代码:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <windows.h>
#include <graphics.h>
#include <conio.h>
#include <graphics.h>
#include <complex.h>
#define pi 3.1415926
#define H 600.0
#define W 600.0


const int NUM_ITER = 1000;		// 迭代次数
const int N = 500;
#ifndef  SWAP
#define SWAP(a, b, t) {
     t = a; a = b; b = t;}
#endif // ! SWAP
void color(short x)//设置字体颜色的自定义函数
{
   
    if((x>=0)&&(x<=15))
        SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE),x);
    else
        SetConsoleTextAttribute(GetStdHandle(STD_OUTPUT_HANDLE),7);
}
//0=黑色  1=蓝色  2=绿色  3=湖蓝色  4=红色  5=紫色
//6=黄色  7=白色  8=灰色  9=淡蓝色  10=淡绿色  11=淡浅绿色
//12=淡红色 13=淡紫色 14=淡黄色 15=亮白色
struct Complex
{
   
	double re, im;

	Complex() :re(0.0), im(0.0) {
   }
	Complex(double real, double imag) : re(real), im(imag) {
   }

	//重载运算符
	Complex operator * (Complex c) {
    return Complex(re * c.re - im * c.im, im * c.re + re * c.im); }
	//Complex operator / (Complex c) { if(c.re==0&&c.im==0){return Complex(0,0);}else {return Complex((re*c.re+im*c.im)/(c.re*c.re+c.im*c.im),(im*c.re-re*c.im)/(c.re*c.re+c.im*c.im))}};
	Complex operator + (Complex c) {
    return Complex(re + c.re, im + c.im); }
	Complex operator - (Complex c) {
    return Complex(re - c.re, im - c.im); }
	//Complex operator ^ (double n) { return Complex(pow(sqrt(re*re+im*im),n)*cos(n*atan(im/re)),pow(sqrt(re*re+im*im),n)*sin(n*atan(im/re))); }
};

Complex operator / (Complex a, Complex b)
{
   
	Complex c;
	if(b.re==0&&b.im==0)
    {
   
        c.re = 0;
        c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值