242.有效的字母异位词
给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。
示例 1: 输入: s = “anagram”, t = “nagaram” 输出: true
示例 2: 输入: s = “rat”, t = “car” 输出: false
说明: 你可以假设字符串只包含小写字母。
C++代码:
class Solution {
public:
bool isAnagram(string s, string t) {
unordered_map<char, int> a, b;
for (auto c: s) a[c]++;
for (auto c: t) b[c]++;
return a == b;
}
};
349. 两个数组的交集
题意:给定两个数组,编写一个函数来计算它们的交集。

说明:输出结果中的每个元素一定是唯一的。 我们可以不考虑输出结果的顺序。
C++代码:
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
unordered_set<int> a(nums1.begin(), nums1.end());
vector<int> res;
for (auto x: nums2) {
if (a.count(x)) {
res.push_back(x);
a.erase(x);
}
}
return res;
}
};
第202题. 快乐数
编写一个算法来判断一个数 n 是不是快乐数。
「快乐数」定义为:
- 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
- 然后重复这个过程直到这个数变为 1,也可能是无限循环但始终变不到 1。
- 如果这个过程结果为 1,那么这个数就是快乐数。
如果 n 是快乐数就返回 True ;不是,则返回 False 。
示例:
输入:n = 19
输出:true
解释:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1
解题思路:
方法一:快慢指针
这道题实际就是包装后的环形链表题目
重复这个过程一定次数后,必然会出现重复的结果,也就是说必然会出现循环的情况:
- 第一种情况:最后循环的数字一直都是
1,表明这个数是快乐数; - 第二种情况:最后出现无限循环,但是始终变不到
1,表明这个数不是快乐数。
那么我们就需要判断循环中到底是不是1,可以运用快慢指针的方法,通过快慢指针相遇点的结果是否为1来判断快乐数。
C++代码:
class Solution {
public:
int get(int n) {
int res = 0;
while(n) {
res += (n % 10) * (n % 10);
n /= 10;
}
return res;
}
bool isHappy(int n) {
int fast = get(n), slow = n;
while (fast != slow) {
fast = get(get(fast));
slow = get(slow);
}
return fast == 1;
}
};
方法二:哈希法
题目中说了会无限循环,那么也就是说求和的过程中,res会重复出现,这对解题很重要!
当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法了。
所以这道题目使用哈希法,来判断这个res是否重复出现,如果重复了就是return false, 否则一直找到res为1为止。
判断res是否重复出现就可以使用unordered_set。
C++代码:
class Solution {
public:
int get(int n) {
int res = 0;
while(n) {
res += (n % 10) * (n % 10);
n /= 10;
}
return res;
}
bool isHappy(int n) {
unordered_set<int> set;
while (1) {
int res = get(n);
if (res == 1) return true;
if (set.count(res)) return false;
else set.insert(res);
n = res;
}
}
};
1. 两数之和
给定一个整数数组nums和一个整数目标值target,请你在该数组中找出和为目标值 target 的那两个整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
示例 1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1]。
示例 2:
输入:nums = [3,2,4], target = 6
输出:[1,2]
示例 3:
输入:nums = [3,3], target = 6
输出:[0,1]
C++代码:
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
vector<int> res;
unordered_map<int, int> hash;
for (int i = 0; i < nums.size(); i++) {
int another = target - nums[i];
if (hash.count(another)) {
res = {hash[another], i};
break;
}
hash[nums[i]] = i;
}
return res;
}
};
454. 四数相加 II
给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足:
0 <= i, j, k, l < nnums1[i] + nums2[j] + nums3[k] + nums4[l] == 0
示例 1:
输入:nums1 = [1,2], nums2 = [-2,-1], nums3 = [-1,2], nums4 = [0,2]
输出:2
解释:
两个元组如下:
1. (0, 0, 0, 1) -> nums1[0] + nums2[0] + nums3[0] + nums4[1] = 1 + (-2) + (-1) + 2 = 0
2. (1, 1, 0, 0) -> nums1[1] + nums2[1] + nums3[0] + nums4[0] = 2 + (-1) + (-1) + 0 = 0
示例 2:
输入:nums1 = [0], nums2 = [0], nums3 = [0], nums4 = [0]
输出:1
C++代码:
class Solution {
public:
int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
unordered_map<int, int> cnt;
for (auto a: nums1)
for (auto b: nums2)
cnt[a + b]++;
int res = 0;
for (auto c: nums3)
for (auto d: nums4)
if (cnt.find(-(c + d)) != cnt.end()) //可不写这个条件
res += cnt[-(c + d)];
return res;
}
};
383. 赎金信
给你两个字符串:ransomNote 和 magazine ,判断 ransomNote 能不能由 magazine 里面的字符构成。
如果可以,返回 true ;否则返回 false 。
magazine 中的每个字符只能在 ransomNote 中使用一次。
示例 1:
输入:ransomNote = "a", magazine = "b"
输出:false
示例 2:
输入:ransomNote = "aa", magazine = "ab"
输出:false
示例 3:
输入:ransomNote = "aa", magazine = "aab"
输出:true
C++代码:
class Solution {
public:
bool canConstruct(string ransomNote, string magazine) {
unordered_map<char, int> hash;
for (auto c: magazine) hash[c]++;
for (auto c: ransomNote) {
if (hash[c]) hash[c]--;
else return false;
}
return true;
}
};
15. 三数之和
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请
你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。
提示:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
解题思路:
这题需要确定三个整数,最终组成的三元组和为0,其实可以先对数组进行排序,然后三元组的最小值,接着在运用双指针对另外两个整数进行取值。假设三元组中从小到大的三个整数对应的下标分别为i、j、k,则可以先固定i的取值nums[i],然后把j初始化为j = i + 1,k初始化为nums.size() - 1,通过不断移动双指针j和k的取值,进而找到nums[i] + nums[j] + nums[k] = 0的i、j、k。
注意⚠️:这道题要求返回的结果中不包含重复的三元组,简单来说当我们遍历完i = 0的情况后执行i++,此时如果nums[1] = nums[0],也就是说nums[i] = nums[i - 1],那么就会导致我们刚刚讨论过的组合情况会出现重复讨论的情况,因此为了避免重复讨论而导致出现重复三元组,可以直接跳过这种情况。
C++代码:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size(); i++) {
//如果当前遍历的i对应的nums[i]和前一个i-1对应的nums[i-1]值相等,
//则直接跳过当前的i,因为该情况下的组合已经在i-1时讨论过,避免重复讨论
if (i > 0 && nums[i] == nums[i - 1]) continue;
for (int j = i + 1, k = nums.size() - 1; j < k; j++) {
if (j > i + 1 && nums[j] == nums[j - 1]) continue; // 避免重复讨论
while (j < k && nums[i] + nums[j] + nums[k] > 0) k--;
if (j < k && nums[i] + nums[j] + nums[k] == 0) {
res.push_back({nums[i], nums[j], nums[k]});
}
}
}
return res;
}
};
18. 四数之和
给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复):
0 <= a, b, c, d < na、b、c和d互不相同nums[a] + nums[b] + nums[c] + nums[d] == target
你可以按 任意顺序 返回答案 。
示例 1:
输入:nums = [1,0,-1,0,-2,2], target = 0
输出:[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
示例 2:
输入:nums = [2,2,2,2,2], target = 8
输出:[[2,2,2,2]]
提示:
- 1 <=
nums.length<= 200 - -109 <=
nums[i]<= 109 - -109 <=
target<= 109
解题思路和上一题三数之和完全一样,都是使用双指针进行优化,时间复杂度从O(n4)优化为O(n3),具体代码如下:
C++代码:
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
sort(nums.begin(), nums.end());
vector<vector<int>> res;
for (int i = 0; i < nums.size(); i ++ ) {
if (i && nums[i] == nums[i - 1]) continue;
for (int j = i + 1; j < nums.size(); j ++ ) {
if (j > i + 1 && nums[j] == nums[j - 1]) continue;
for (int k = j + 1, u = nums.size() - 1; k < u; k ++ ) {
if (k > j + 1 && nums[k] == nums[k - 1]) continue;
while (u - 1 > k && (long)nums[i] + nums[j] >= (long)target - nums[k] - nums[u - 1]) u -- ;
if ((long)nums[i] + nums[j] == (long)target - nums[k] - nums[u]) {
res.push_back({nums[i], nums[j], nums[k], nums[u]});
}
}
}
}
return res;
}
};
本文介绍了LeetCode中涉及字符串处理和数组操作的几道经典算法题,包括判断字母异位词、计算两个数组的交集、快乐数的判断、两数之和、四数相加、赎金信问题、三数之和以及四数之和。文章提供了C++实现的代码示例,主要利用哈希表和双指针优化算法效率。
1164

被折叠的 条评论
为什么被折叠?



