代码随想录算法训练营43期 | Day 11
150. 逆波兰表达式求值
示例 1:
输入: [“2”, “1”, “+”, “3”, " * "]
输出: 9
解释: 该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入: [“4”, “13”, “5”, “/”, “+”]
输出: 6
解释: 该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
解题思路
逆波兰表达式相当于二叉树的后序遍历
class Solution {
public:
int evalRPN(vector<string>& tokens) {
//1 定义一个栈
stack<int> st;
//2. 遍历字符串数组tokens
for(int i = 0;i < tokens.size();i++)
{
//3. 判断遇到运算符
if(tokens[i]=="+"||tokens[i]=="-"||tokens[i]=="*"||tokens[i]=="/")
{
//4. 取出栈顶元素,并弹出
int nums1 = st.top();
st.pop();
int nums2 = st.top();
st.pop();
//5. 判断两个数字之间的操作,需注意数字的顺序
if(tokens[i]=="+") st.push(nums2+nums1);
if(tokens[i]=="-") st.push(nums2-nums1);
if(tokens[i]=="*") st.push(nums2*nums1);
if(tokens[i]=="/") st.push(nums2/nums1);
}else
{
//遍历tokens遇到数字,入栈;需将字符串转为int类型
st.push(stoll(tokens[i]));
}
}
//6. 遍历结束后,最终结果存储在栈中
int result = st.top();
st.pop();
return result;
}
};
239. 滑动窗口最大值(单调队列)
给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回滑动窗口的最大值
解题思路
单调队列
此时我们需要一个队列,这个队列呢,放进去窗口里的元素,然后随着窗口的移动,队列也一进一出,每次移动之后,队列告诉我们里面的最大值是什么。
单调队列:每次窗口移动的时候,调用que.pop(滑动窗口中移除元素的数值),que.push(滑动窗口添加元素的数值),然后que.front()就返回我们要的最大值。
队列里的元素一定是要排序的,而且要最大值放在出队口
其实队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队列里的元素数值是由大到小的。
维护元素单调递减的队列就叫做单调队列
此处的 “队列” 跟普通队列的一大不同就在于可以从队尾进行操作,STL 中有类似的数据结构 deque。
设计单调队列的时候,pop,和push操作要保持如下规则:
- pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
- push(value):如果push的元素value大于入口元素的数值,那么就将队列入口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止
class Solution {
public:
class MyQueue
{
public:
//使用deque来实现单调队列
deque<int> deq;
// 弹出元素,弹出
//元素每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
void pop(int value)
{
if(!deq.empty()&&value == deq.front())
{
deq.pop_front();
}
}
// 插入元素
//如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。
// 这样就保持了队列里的数值是单调从大到小的了。
void push(int value)
{
while(!deq.empty()&&value > deq.back())
{
deq.pop_back();
}
deq.push_back(value);
}
//获取最大值
int getMax()
{
return deq.front();
}
};
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
vector<int> result;//存储结果
MyQueue myque;
//1 将前k个元素插入队列中
for(int i = 0;i < k; i++)
{
myque.push(nums[i]);
}
//2 记录前k个元素最大值
result.push_back(myque.getMax());
//3 i = k 开始,滑动窗口
for(int i = k;i<nums.size();i++)
{
myque.pop(nums[i - k]);
myque.push(nums[i]);
result.push_back(myque.getMax());
}
return result;
}
};
347.前 K 个高频元素(优先级队列)
给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
解题思路
思路:
这道题目主要涉及到如下三块内容:
- 要统计元素出现频率
- 对频率排序
- 找出前K个高频元素
对元素出现的频率进行排序,使用map
来进行统计,key
保存元素,value
保存元素出现的次数;
缺省情况下priority_queue
利用max-heap
(大顶堆)完成对元素的排序,这个大顶堆是以vector为表现形式的complete binary tree(完全二叉树)。
以value进行一个排序,输出前k个元素(key)
什么是堆呢?
堆是一棵完全二叉树,树中每个结点的值都不小于(或不大于)其左右孩子的值。 如果父亲结点是大于等于左右孩子就是大顶堆,小于等于左右孩子就是小顶堆。
大顶堆(堆头是最大元素):从大到小排就是大顶堆,排序后得到的结果是 从小到大,正序
小顶堆(堆头是最小元素):从小到大排就是小顶堆,排序后得到的结果是 从大到小,倒序
class Solution {
public:
// 小顶堆
class mycomparison {
public:
bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
return lhs.second > rhs.second;
}
};
vector<int> topKFrequent(vector<int>& nums, int k) {
// 要统计元素出现频率
unordered_map<int, int> map; // map<nums[i],对应出现的次数>
for (int i = 0; i < nums.size(); i++) {
map[nums[i]]++;
}
// 对频率排序
// 定义一个小顶堆,大小为k
priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;
// 用固定大小为k的小顶堆,扫面所有频率的数值
for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++) {
pri_que.push(*it);
if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k
pri_que.pop();
}
}
// 找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组
vector<int> result(k);
for (int i = k - 1; i >= 0; i--) {
result[i] = pri_que.top().first;
pri_que.pop();
}
return result;
}
};