代码随想录算法训练营43期 | Day 11——150. 逆波兰表达式求值、239. 滑动窗口最大值(单调队列)、347.前 K 个高频元素(优先级队列)

20 篇文章 0 订阅

代码随想录算法训练营43期 | Day 11

150. 逆波兰表达式求值

示例 1:
输入: [“2”, “1”, “+”, “3”, " * "]
输出: 9
解释: 该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例 2:
输入: [“4”, “13”, “5”, “/”, “+”]
输出: 6
解释: 该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

解题思路

逆波兰表达式相当于二叉树的后序遍历

class Solution {
public:
    int evalRPN(vector<string>& tokens) {
        //1 定义一个栈
        stack<int> st;
        //2. 遍历字符串数组tokens
        for(int i = 0;i < tokens.size();i++)
        {
            //3. 判断遇到运算符
            if(tokens[i]=="+"||tokens[i]=="-"||tokens[i]=="*"||tokens[i]=="/")
            {
                //4. 取出栈顶元素,并弹出
                int nums1 = st.top();
                st.pop();
                int nums2 = st.top();
                st.pop();
                //5. 判断两个数字之间的操作,需注意数字的顺序
                if(tokens[i]=="+")  st.push(nums2+nums1);
                if(tokens[i]=="-")  st.push(nums2-nums1);
                if(tokens[i]=="*")  st.push(nums2*nums1);
                if(tokens[i]=="/")  st.push(nums2/nums1);
            }else
            {
                //遍历tokens遇到数字,入栈;需将字符串转为int类型
                st.push(stoll(tokens[i]));
            }
        }
        //6. 遍历结束后,最终结果存储在栈中
        int result = st.top();
        st.pop();
        return result;
    }
};

239. 滑动窗口最大值(单调队列)

给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回滑动窗口的最大值

解题思路

单调队列
此时我们需要一个队列,这个队列呢,放进去窗口里的元素,然后随着窗口的移动,队列也一进一出,每次移动之后,队列告诉我们里面的最大值是什么。

单调队列:每次窗口移动的时候,调用que.pop(滑动窗口中移除元素的数值),que.push(滑动窗口添加元素的数值),然后que.front()就返回我们要的最大值。

队列里的元素一定是要排序的,而且要最大值放在出队口

其实队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队列里的元素数值是由大到小的。
维护元素单调递减的队列就叫做单调队列

此处的 “队列” 跟普通队列的一大不同就在于可以从队尾进行操作,STL 中有类似的数据结构 deque。

设计单调队列的时候,pop,和push操作要保持如下规则:

  • pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
  • push(value):如果push的元素value大于入口元素的数值,那么就将队列入口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止
class Solution {
public:
    class MyQueue
    {
        public:
        //使用deque来实现单调队列
        deque<int> deq;

        // 弹出元素,弹出
        //元素每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
        void pop(int value)
        {
            if(!deq.empty()&&value == deq.front())
            {
                deq.pop_front();
            }
        }
        // 插入元素
        //如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。
    // 这样就保持了队列里的数值是单调从大到小的了。
        void push(int value)
        {
            while(!deq.empty()&&value > deq.back())
            {
                deq.pop_back();
            }
            deq.push_back(value);
        }
        //获取最大值
        int getMax()
        {
            return deq.front();
        }
    };

    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        vector<int> result;//存储结果
        MyQueue myque;
        //1 将前k个元素插入队列中
        for(int i = 0;i < k; i++)
        {
            myque.push(nums[i]);
        }
        //2 记录前k个元素最大值
        result.push_back(myque.getMax());
        //3 i = k 开始,滑动窗口
        for(int i = k;i<nums.size();i++)
        {
            myque.pop(nums[i - k]);
            myque.push(nums[i]);
            result.push_back(myque.getMax());
        }
        return result;
    }
};

347.前 K 个高频元素(优先级队列)

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

解题思路

思路:
这道题目主要涉及到如下三块内容:

  • 要统计元素出现频率
  • 对频率排序
  • 找出前K个高频元素

对元素出现的频率进行排序,使用map来进行统计,key保存元素,value保存元素出现的次数;
缺省情况下priority_queue利用max-heap(大顶堆)完成对元素的排序,这个大顶堆是以vector为表现形式的complete binary tree(完全二叉树)。
以value进行一个排序,输出前k个元素(key)

什么是堆呢?
堆是一棵完全二叉树,树中每个结点的值都不小于(或不大于)其左右孩子的值。 如果父亲结点是大于等于左右孩子就是大顶堆,小于等于左右孩子就是小顶堆。
大顶堆(堆头是最大元素):从大到小排就是大顶堆,排序后得到的结果是 从小到大,正序
小顶堆(堆头是最小元素):从小到大排就是小顶堆,排序后得到的结果是 从大到小,倒序

class Solution {
public:
    // 小顶堆
    class mycomparison {
    public:
        bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
            return lhs.second > rhs.second;
        }
    };
    vector<int> topKFrequent(vector<int>& nums, int k) {
        // 要统计元素出现频率
        unordered_map<int, int> map; // map<nums[i],对应出现的次数>
        for (int i = 0; i < nums.size(); i++) {
            map[nums[i]]++;
        }

        // 对频率排序
        // 定义一个小顶堆,大小为k
        priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;

        // 用固定大小为k的小顶堆,扫面所有频率的数值
        for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++) {
            pri_que.push(*it);
            if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k
                pri_que.pop();
            }
        }

        // 找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组
        vector<int> result(k);
        for (int i = k - 1; i >= 0; i--) {
            result[i] = pri_que.top().first;
            pri_que.pop();
        }
        return result;

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值