介绍
脑机接口(brain-computer interface,BCI)是一种人脑与机器之间的交流方式,通过采集大脑神经活动产生的脑电(electroencephalography,EEG)信号并对其进行编码,产生对另一个设备的控制信号。被控制的设备可以是计算机鼠标、仿生机器人或者是其他机械结构。BCI设备功能实现过程如下,首先由用户意图(言语、动作或者运动)在大脑中产生具有确定性峰值的复杂脑电信号(EEG);然后EEG信号传递到神经系统或者肌肉组织时,将导致特定动作的执行;最后通过BCI提取大脑生成的相同意图信号以控制有助于用户的设备。简而言之,BCI使神经信号绕过从大脑到运动部件的过程,而是通过计算机传输到了适用设备。
BCI相关应用
BCI相关技术在游戏和医疗等领域逐渐得到应用,下面是一些常见的脑机接口应用。
- 残疾人通信恢复领域:当用户完全瘫痪或者无法说话时,可以利用BCI实现残疾人的通信恢复。Keirn和Aunon等人曾经创建了一个通信恢复系统,通过使残疾患者拼写特定字码的形式帮助实现了单词拼写能力。
- 义肢运动控制:瘫痪患者运动控制的恢复也是一个重要应用,这类应用主要采用感觉运动节律系统(Sensorimotor Rhythms,SMR),以运动想象的形式实现对义肢的控制。
- 更多:除此之外,虚拟世界导航、警觉性监测、测谎以及游戏娱乐等领域均能有所应用。
BCI相关技术
考虑到BCI技术是一个多学科交叉的领域,涉及神经科学、计算机科学、工程学和信号处理等多个学科,其关键技术主要包括信号采集、信号预处理、特征提取、分类和解码、控制策略、闭环系统和多模态融合。
- 信号采集:BCI系统首先需要采集大脑活动产生的信号。最常用的信号采集技术是脑电图(EEG),它通过在头皮上放置电极来记录大脑的电活动。除了EEG,还可以使用功能性磁共振成像(fMRI)、近红外光谱成像(fNIRS)等技术。
- 信号预处理:采集到的原始脑电信号通常包含噪声和伪影,需要通过滤波、去除眼动和心电干扰等方法进行预处理,以便提取有用的信号。
- 特征提取:特征提取是从预处理后的信号中识别出与用户意图相关的特征。常用的特征提取技术包括时域分析、频域分析、小波变换、自回归模型、样本熵等。
- 分类和解码:分类器用于将提取的特征映射到特定的控制命令。常用的分类算法包括支持向量机(SVM)、随机森林、k近邻、朴素贝叶斯、深度学习等。深度学习,尤其是卷积神经网络(CNN)和循环神经网络(RNN),在处理序列数据和提高分类准确性方面表现出色。
- 控制策略:BCI系统需要设计合适的控制策略来解释用户的意图并将其转换为外部设备的控制信号。控制策略可以基于用户的运动想象(MI)、稳态视觉诱发电位(SSVEP)、事件相关电位(ERP)、慢皮层电位(SCP)等。
- 闭环系统:闭环BCI系统能够根据用户的大脑活动和外部反馈动态调整其参数,以优化性能。这种系统在康复训练中尤为重要,因为它可以根据患者的进展调整训练难度。
- 多模态融合:多模态融合技术结合了来自不同传感器的数据,如EEG、肌电图(EMG)、眼动追踪等,以提高BCI系统的性能和鲁棒性。
BCI技术的分类
根据信号采集方式的差异,可以将BCI技术分为侵入式BCI和非侵入式BCI。侵入式BCI通过植入电极与大脑皮层接触,获得高质量脑电信号,但是存在手术风险、免疫反应以及信号疲劳的问题;非侵入式BCI是采集头皮表面脑电信号(EEG),对用户更为友好,但是信号质量相对较低。