ISLR统计学习导论之R语言应用(六):R语言实现变量选择和岭回归

本文详细介绍了R语言在统计学习中如何实现变量选择和岭回归,包括前向和后向选择、验证集方法、交叉验证在模型选择中的应用。此外,探讨了岭回归和Lasso回归的差异,以及主成分回归和偏最小二乘回归的原理与实操。文章通过具体实例展示了如何使用R中的regsubsets、glmnet和pls库进行模型构建和优化,强调了交叉验证在选择最佳模型中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ISLR统计学习导论之R语言应用(六):R语言实现变量选择和岭回归


  • 🌸个人主页:JOJO数据科学
  • 📝个人介绍:统计学top3高校统计学硕士在读
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏
  • ✨本文收录于【R语言数据科学】本系列主要介绍R语言在数据科学领域的应用包括:
    R语言编程基础、R语言可视化、R语言进行数据操作、R语言建模、R语言机器学习算法实现、R语言统计理论方法实现。本系列会坚持完成下去,请大家多多关注点赞支持,一起学习~,尽量坚持每周持续更新,欢迎大家订阅交流学习!

请添加图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JOJO数据科学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值