这是你提供的DeepSpeed单机多卡训练步骤的Markdown格式:
使用 DeepSpeed 进行单机多卡训练的主要步骤
1. 安装 DeepSpeed
确保你已经安装了 DeepSpeed 及其依赖:
pip install deepspeed
- 设置模型并集成 DeepSpeed
在模型的定义和训练循环中集成 DeepSpeed:
import deepspeed
假设你有一个 PyTorch 模型
model = MyModel()
配置 DeepSpeed 参数,例如优化器、梯度累积等
ds_config = {
“train_batch_size”: 32,
“gradient_accumulation_steps”: 1,
“fp16”: {
“enabled”: True,
“initial_scale_power”: 16
},
“zero_optimization”: {
“stage”: 2
}
}
使用 deepspeed.initialize 初始化模型
model_engine, optimizer, _, _ = deepspeed.initialize(
model=model,
model_parameters=model.parameters(),
config=ds_config
)
- 多卡并行训练
DeepSpeed 自动管理数据并行和模型优化。使用 torch.distributed.launch 来启动单机多卡训练。通常,你可以使用以下命令:
deepspeed --num_gpus=4 train.py
其中,train.py 是你编写的训练脚本,–num_gpus=4 表示使用 4 张 GPU 进行训练。
- 修改训练脚本以支持多卡训练
在训练循环中,将模型的 forward 和 backward 操作交给 DeepSpeed 管理。例如:
for step, batch in enumerate(data_loader):
inputs, labels = batch
# 前向传播
outputs = model_engine(inputs)
# 计算损失
loss = loss_fn(outputs, labels)
# 反向传播和优化
model_engine.backward(loss)
model_engine.step()
- DeepSpeed 配置文件
你还可以通过一个 JSON 配置文件来管理 DeepSpeed 的设置。通常可以创建一个 ds_config.json 文件,里面包含优化器、调度器、fp16 等的配置:
{
“train_batch_size”: 32,
“gradient_accumulation_steps”: 1,
“fp16”: {
“enabled”: true,
“initial_scale_power”: 16
},