使用DeepSpeed进行单机多卡训练

这是你提供的DeepSpeed单机多卡训练步骤的Markdown格式:

使用 DeepSpeed 进行单机多卡训练的主要步骤

1. 安装 DeepSpeed

确保你已经安装了 DeepSpeed 及其依赖:

pip install deepspeed
  1. 设置模型并集成 DeepSpeed

在模型的定义和训练循环中集成 DeepSpeed:


import deepspeed

假设你有一个 PyTorch 模型

model = MyModel()

配置 DeepSpeed 参数,例如优化器、梯度累积等

ds_config = {
“train_batch_size”: 32,
“gradient_accumulation_steps”: 1,
“fp16”: {
“enabled”: True,
“initial_scale_power”: 16
},
“zero_optimization”: {
“stage”: 2
}
}

使用 deepspeed.initialize 初始化模型

model_engine, optimizer, _, _ = deepspeed.initialize(
model=model,
model_parameters=model.parameters(),
config=ds_config
)

  1. 多卡并行训练

DeepSpeed 自动管理数据并行和模型优化。使用 torch.distributed.launch 来启动单机多卡训练。通常,你可以使用以下命令:

deepspeed --num_gpus=4 train.py

其中,train.py 是你编写的训练脚本,–num_gpus=4 表示使用 4 张 GPU 进行训练。

  1. 修改训练脚本以支持多卡训练

在训练循环中,将模型的 forward 和 backward 操作交给 DeepSpeed 管理。例如:

for step, batch in enumerate(data_loader):
inputs, labels = batch

# 前向传播
outputs = model_engine(inputs)

# 计算损失
loss = loss_fn(outputs, labels)

# 反向传播和优化
model_engine.backward(loss)
model_engine.step()
  1. DeepSpeed 配置文件

你还可以通过一个 JSON 配置文件来管理 DeepSpeed 的设置。通常可以创建一个 ds_config.json 文件,里面包含优化器、调度器、fp16 等的配置:

{
“train_batch_size”: 32,
“gradient_accumulation_steps”: 1,
“fp16”: {
“enabled”: true,
“initial_scale_power”: 16
},

### 使用 DeepSpeed 进行单机训练 ChatGLM 模型 #### 配置文件设置 对于使用 DeepSpeed 训练大型语言模型(LLMs),配置文件至关重要。通常情况下,DeepSpeed 的配置通过 JSON 文件指定。下面是一个适用于 ChatGLM 模型的典型 DeepSpeed 配置文件 `ds_config.json`: ```json { "fp16": { "enabled": true, "loss_scale": 0, "initial_scale_power": 32, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": 5e-5, "betas": [0.9, 0.999], "eps": 1e-8, "weight_decay": 0.01 } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": 0, "warmup_max_lr": 5e-5, "warmup_num_steps": 500 } }, "zero_optimization": { "stage": 2, "allgather_partitions": true, "allgather_bucket_size": 2e8, "reduce_scatter": true, "reduce_bucket_size": 2e8, "overlap_comm": true, "load_from_fp32_weights": true, "cpu_offload": false }, "gradient_accumulation_steps": 1, "steps_per_print": 2000, "wall_clock_breakdown": false } ``` 此配置启用了 FP16 和 ZeRO stage 2 来优化内存效率和加速训练过程[^1]。 #### 启动命令 要利用 DeepSpeed 执行单机训练,可以采用如下 bash 脚本启动训练任务。假设已经准备好了上述提到的 `ds_config.json` 文件以及必要的 Python 环境,则可以通过以下方式启动训练: ```bash #!/bin/bash set -ex export PYTHONPATH=$PYTHONPATH:/path/to/your/project/ export DEEPSPEED=1 torchrun \ --nnodes=1 \ --nproc_per_node=4 \ # 假设每台机器有四个 GPU 可用 /path/to/fine_tune.py \ --deepspeed \ --deepspeed_config=/path/to/ds_config.json \ --model_name_or_path=chatglm-model-path \ --output_dir=output_directory \ --train_file=train_data_path \ --validation_file=val_data_path \ --do_train \ --per_device_train_batch_size=4 \ --learning_rate=5e-5 \ --num_train_epochs=3 \ --save_strategy="epoch" ``` 这段脚本同样遵循了良好的实践习惯,在遇到错误时会自动终止,并且显示执行过的每一行命令以便于调试[^3]。 #### 常见问题解决方法 当尝试使用 DeepSpeed 对 LLM 如 ChatGLM 进行微调时可能会碰到一些挑战或障碍。以下是几个常见的解决方案: - **显存不足**:如果发现显存在训练过程中耗尽,考虑调整 batch size 或者启用更高级别的 Zero Redundancy Optimizer (ZeRO),即增加 `"zero_optimization.stage"` 参数至更高的数值。 - **性能瓶颈**:若观察到 I/O 成为性能瓶颈,可探索异步加载数据集的方法或是提高读取速度的数据预处理技术;另外也可以适当减少日志记录频率以减轻磁盘压力。 - **通信延迟过高**:针对跨个 GPU 协同工作的场景下可能出现较高的网络通讯开销问题,建议检查集群内部网路状况确保其稳定高效运作的同时合理规划节点间连接拓扑结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coder小谢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值