numpy学习
啥都只会一点的研究僧
这个作者很懒,什么都没留下…
展开
-
numpy常用函数
numpy 读写文件 #写:函数将数据a存储到test.txt文件中 np.savetxt('test.txt', a) # 读表示读取test.csv文件,分隔符设置 为‘,’(delimiter=','),usecols表示 取得哪几列数据,unpack=True表示分 拆存储不同列的数据,即分别将第6列与 第7列数据赋值给变量x,y ''' x, y = np.loadtxt('test....原创 2020-01-09 10:19:42 · 156 阅读 · 0 评论 -
numpy中的r_[ ]和c_[ ]的区别
当两个矩阵连接式可以用到hstack 和vhstack 和concatenate()三种方法,这里有新的方法。 可以看到,np.r_()是按行叠加,np.c_()是按列叠加。 实现同样的叠加效果 ...原创 2020-01-08 12:42:46 · 691 阅读 · 0 评论 -
numpy 中的tile()函数
tile()函数也是用来重复矩阵时用到的。 第一个参数a,是用来复制的矩阵。第二个参数n,是重复的次数,默认是一行整体重复n次。(需要注意的是tile()和repeat() 的区别,repeat 是一个元素一个元素的重复,tile()是一整行一整行的复制。 这里第二个参数,传入一个元组,元组内的第一个参数是行重复多少次,元组内的第二个参数是列重复多少次。 ...原创 2020-01-08 11:39:15 · 626 阅读 · 0 评论 -
numpy中的repeat()函数
当需要重复矩阵中的数据时,可以用到repeat()函数。 用法如下: a = np.arange(10).reshape(2,-1)原创 2020-01-08 11:25:53 · 1293 阅读 · 0 评论 -
numpy如何叠加两个数组
numpy 中将数组叠加 方法1.用 np.vstack() <垂直方向叠加> np.hstack() <水平方向叠加> 例如: a = np.arange(10).reshape(2,-1) # 创建一个0-9的一维数组,然后转成2行列的二维数组 b = np.repeat(1,10).reshape(2,-1) # 创建一个十个1重复的一维数组, 方法2,用 np....原创 2020-01-07 10:29:47 · 6718 阅读 · 0 评论 -
numpy学习之 np.where()
numpy学习之 np.where() 如何再不影响原始数组的情况下改变元素项 用到的时np中的 where() 数,用法如下: np.where(condition, x, y) 满足条件(condition),输出x,不满足输出y。 arr = np.array([0,1,2,3,4,5,6]) out = np.where(arr % 2 == 1, -1 , arr) ##条件是数组中奇...原创 2020-01-07 09:49:49 · 401 阅读 · 0 评论 -
numpy vstack vs. column_stack
>>> np.vstack(([1,2,3],[4,5,6])) array([[1, 2, 3], [4, 5, 6]]) >>> np.column_stack(([1,2,3],[4,5,6])) array([[1, 4], [2, 5], [3, 6]]) This function is equivalen...原创 2019-07-08 19:47:40 · 436 阅读 · 0 评论 -
matplotlib.pyplot显示中文
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['simhei'] %matplotlib inline原创 2019-06-18 16:23:30 · 730 阅读 · 0 评论 -
numpy.randm.*()
1.np.random.rand(d0,d1,…,dn) rand函数根据给定维度生成[0,1)之间的数据,包含0,不包含1 dn表格每个维度 返回值为指定维度的array import numpy as np np.random.rand(4,2) 结果是: array([[ 0.02173903, 0.44376568], [ 0.25309942, 0.8525926...原创 2019-05-28 16:57:46 · 134 阅读 · 0 评论 -
numpy中np.linspce()
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None) 在指定的间隔内返回均匀间隔的数字。 返回num均匀分布的样本,在[start, stop]。 这个区间的端点可以任意的被排除在外。 import numpy as np np.linspace(1, 10, 10) 结果:包含起始和...原创 2019-05-26 20:18:02 · 468 阅读 · 0 评论