numpy.randm.*()

1.np.random.rand(d0,d1,…,dn)

  • rand函数根据给定维度生成[0,1)之间的数据,包含0,不包含1
  • dn表格每个维度
  • 返回值为指定维度的array
import numpy as np
np.random.rand(4,2)

结果是:
array([[ 0.02173903,  0.44376568],
       [ 0.25309942,  0.85259262],
       [ 0.56465709,  0.95135013],
       [ 0.14145746,  0.55389458]])
np.random.rand(4,3,2) # shape: 4*3*2
结果:生成四个三行两列的array

array([[[ 0.08256277,  0.11408276],
        [ 0.11182496,  0.51452019],
        [ 0.09731856,  0.18279204]],
 
       [[ 0.74637005,  0.76065562],
        [ 0.32060311,  0.69410458],
        [ 0.28890543,  0.68532579]],
 
       [[ 0.72110169,  0.52517524],
        [ 0.32876607,  0.66632414],
        [ 0.45762399,  0.49176764]],
 
       [[ 0.73886671,  0.81877121],
        [ 0.03984658,  0.99454548],
        [ 0.18205926,  0.99637823]]])

2 numpy.random.randn(d0,d1,…,dn)

  • randn函数返回一个或一组样本,具有标准正态分布。
  • dn表格每个维度
  • 返回值为指定维度的array
np.random.randn(2,4)

结果:服从正态分布的二行四列的数
array([[ 0.27795239, -2.57882503,  0.3817649 ,  1.42367345],
       [-1.16724625, -0.22408299,  0.63006614, -0.41714538]])
np.random.randn(4,3,2)

结果:
array([[[-0.21581469,  0.21026752],
        [-1.38095388,  0.48766555],
        [ 0.00776365, -0.57361548]],

       [[ 0.22323015,  0.6573997 ],
        [-1.62839666, -1.26317571],
        [-0.51327929,  1.11003458]],

       [[ 0.73908915,  1.24311867],
        [ 0.34142668,  1.0850261 ],
        [-0.89244125,  0.72265632]],

       [[-1.7220222 , -0.40222138],
        [-1.58163989,  0.64292636],
        [-0.42908297,  1.04140707]]])

3 numpy.random.randint()

  • numpy.random.randint(low, high=None, size=None, dtype=’l’)
  • 返回随机整数,范围区间为[low,high),包含low,不包含high
  • 参数:low为最小值,high为最大值,size为数组维度大小,dtype为数据类型,默认的数据类型是np.int
  • high没有填写时,默认生成随机数的范围是[0,low)
np.random.randint(2,size=5) 

结果是:生成5个0或者1,
array([0, 0, 1, 0, 0])
np.random.randint(-5,5,size=(3,3))

结果:
array([[ 3, -4,  1],
       [-5, -4,  2],
       [-1,  1,  2]])

4 numpy.random.choice()

  • numpy.random.choice(a, size=None, replace=True, p=None)
  • 从给定的一维数组中生成随机数
  • 参数: a为一维数组类似数据或整数;size为数组维度;p为数组中的数据出现的概率,replace是控制能不能出现重复的值(默认是True)
  • a为整数时,对应的一维数组为np.arange(a)
np.random.choice(4,5)


结果:
array([3, 3, 3, 1, 2])
np.random.choice(5,size=(3,2))

结果:
array([[2, 4],
       [0, 4],
       [3, 1]])

demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone']
np.random.choice(demo_list,size=(3,3))
demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone']
np.random.choice(demo_list,size=(3,3),p=[0.2,0.2,0.4,0.1,0.1])

结果:
array([['sansumg', 'moto', 'moto'],
       ['iphone', 'moto', 'moto'],
       ['lenovo', 'moto', 'sansumg']], dtype='<U7')

5. numpy.random.seed()

  • np.random.seed()的作用:使得随机数据可预测。
    当我们设置相同的seed,每次生成的随机数相同。如果不设置seed,则每次会生成不同的随机数
np.random.seed(2)

np.random.rand(5)

结果:每次执行随机的数都是这几个,如果没有第一行,则随机取到的数会不同
array([0.4359949 , 0.02592623, 0.54966248, 0.43532239, 0.4203678 ])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值