1.np.random.rand(d0,d1,…,dn)
- rand函数根据给定维度生成[0,1)之间的数据,包含0,不包含1
- dn表格每个维度
- 返回值为指定维度的array
import numpy as np
np.random.rand(4,2)
结果是:
array([[ 0.02173903, 0.44376568],
[ 0.25309942, 0.85259262],
[ 0.56465709, 0.95135013],
[ 0.14145746, 0.55389458]])
np.random.rand(4,3,2) # shape: 4*3*2
结果:生成四个三行两列的array
array([[[ 0.08256277, 0.11408276],
[ 0.11182496, 0.51452019],
[ 0.09731856, 0.18279204]],
[[ 0.74637005, 0.76065562],
[ 0.32060311, 0.69410458],
[ 0.28890543, 0.68532579]],
[[ 0.72110169, 0.52517524],
[ 0.32876607, 0.66632414],
[ 0.45762399, 0.49176764]],
[[ 0.73886671, 0.81877121],
[ 0.03984658, 0.99454548],
[ 0.18205926, 0.99637823]]])
2 numpy.random.randn(d0,d1,…,dn)
- randn函数返回一个或一组样本,具有标准正态分布。
- dn表格每个维度
- 返回值为指定维度的array
np.random.randn(2,4)
结果:服从正态分布的二行四列的数
array([[ 0.27795239, -2.57882503, 0.3817649 , 1.42367345],
[-1.16724625, -0.22408299, 0.63006614, -0.41714538]])
np.random.randn(4,3,2)
结果:
array([[[-0.21581469, 0.21026752],
[-1.38095388, 0.48766555],
[ 0.00776365, -0.57361548]],
[[ 0.22323015, 0.6573997 ],
[-1.62839666, -1.26317571],
[-0.51327929, 1.11003458]],
[[ 0.73908915, 1.24311867],
[ 0.34142668, 1.0850261 ],
[-0.89244125, 0.72265632]],
[[-1.7220222 , -0.40222138],
[-1.58163989, 0.64292636],
[-0.42908297, 1.04140707]]])
3 numpy.random.randint()
- numpy.random.randint(low, high=None, size=None, dtype=’l’)
- 返回随机整数,范围区间为[low,high),包含low,不包含high
- 参数:low为最小值,high为最大值,size为数组维度大小,dtype为数据类型,默认的数据类型是np.int
- high没有填写时,默认生成随机数的范围是[0,low)
np.random.randint(2,size=5)
结果是:生成5个0或者1,
array([0, 0, 1, 0, 0])
np.random.randint(-5,5,size=(3,3))
结果:
array([[ 3, -4, 1],
[-5, -4, 2],
[-1, 1, 2]])
4 numpy.random.choice()
- numpy.random.choice(a, size=None, replace=True, p=None)
- 从给定的一维数组中生成随机数
- 参数: a为一维数组类似数据或整数;size为数组维度;p为数组中的数据出现的概率,replace是控制能不能出现重复的值(默认是True)
- a为整数时,对应的一维数组为np.arange(a)
np.random.choice(4,5)
结果:
array([3, 3, 3, 1, 2])
np.random.choice(5,size=(3,2))
结果:
array([[2, 4],
[0, 4],
[3, 1]])
demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone']
np.random.choice(demo_list,size=(3,3))
demo_list = ['lenovo', 'sansumg','moto','xiaomi', 'iphone']
np.random.choice(demo_list,size=(3,3),p=[0.2,0.2,0.4,0.1,0.1])
结果:
array([['sansumg', 'moto', 'moto'],
['iphone', 'moto', 'moto'],
['lenovo', 'moto', 'sansumg']], dtype='<U7')
5. numpy.random.seed()
- np.random.seed()的作用:使得随机数据可预测。
当我们设置相同的seed,每次生成的随机数相同。如果不设置seed,则每次会生成不同的随机数
np.random.seed(2)
np.random.rand(5)
结果:每次执行随机的数都是这几个,如果没有第一行,则随机取到的数会不同
array([0.4359949 , 0.02592623, 0.54966248, 0.43532239, 0.4203678 ])