1. 题目
实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。不得使用库函数,同时不需要考虑大数问题。
示例 1:
输入:x = 2.00000, n = 10
输出:1024.00000
示例 2:
输入:x = 2.10000, n = 3
输出:9.26100
示例 3:
输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25
提示:
-100.0 < x < 100.0
-231 <= n <= 231-1
-104 <= xn <= 104
2. 思路
- 暴力解法: 遍历三种情况,相乘。超时
- 递归:
- 如果n == 0,返回1
- 如果n < 0,最终结果为 1/x^{-n}1/x −n
- 如果n为奇数,最终结果为 x * x ^ {n - 1}x∗x n−1
- 如果n为偶数,最终结果为 x ^ {2*(n/2)}x 2∗(n/2)
如果不分为奇偶数讨论,还是会超时;分为奇偶讨论,降低递归的次数
3. 程序
- 取巧的方式
class Solution:
def myPow(self, x: float, n: int) -> float:
return x**n
- 递归
# 减小递归的深度
class Solution:
def myPow(self, x: float, n: int) -> float:
if n == 0:
return 1
elif n < 0:
return 1/self.myPow(x, -n)
elif n & 1:
return x * self.myPow(x, n - 1)
# 将奇数转为偶数的形式,时间和内存都会减少
# return x * self.myPow(x*x, (n-1)//2)
else:
return self.myPow(x*x, n // 2)
4. 总结
- Python 的方法比较多,可以多了解一些
- 递归的使用,分开进行讨论