剑指 Offer 16. 数值的整数次方

1. 题目

实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。不得使用库函数,同时不需要考虑大数问题。

示例 1:
输入:x = 2.00000, n = 10
输出:1024.00000

示例 2:
输入:x = 2.10000, n = 3
输出:9.26100

示例 3:
输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25

提示:
-100.0 < x < 100.0
-231 <= n <= 231-1
-104 <= xn <= 104

2. 思路

  • 暴力解法: 遍历三种情况,相乘。超时
  • 递归:
    • 如果n == 0,返回1
    • 如果n < 0,最终结果为 1/x^{-n}1/x −n
    • 如果n为奇数,最终结果为 x * x ^ {n - 1}x∗x n−1
    • 如果n为偶数,最终结果为 x ^ {2*(n/2)}x 2∗(n/2)

如果不分为奇偶数讨论,还是会超时;分为奇偶讨论,降低递归的次数

3. 程序

  • 取巧的方式
class Solution:
    def myPow(self, x: float, n: int) -> float:
        return x**n
  • 递归
# 减小递归的深度
class Solution:
    def myPow(self, x: float, n: int) -> float:
          if n == 0:
            return 1
        elif n < 0:
            return 1/self.myPow(x, -n)
        elif n & 1:
            return x * self.myPow(x, n - 1) 
            #  将奇数转为偶数的形式,时间和内存都会减少 
           # return x * self.myPow(x*x, (n-1)//2)
        else:
            return self.myPow(x*x, n // 2)

4. 总结

  • Python 的方法比较多,可以多了解一些
  • 递归的使用,分开进行讨论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nsq_ai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值