【Python性能分析】Mysql、Pandas、Python列表,三者的查询性能谁强谁弱?

2 篇文章 0 订阅
2 篇文章 0 订阅
本文对比了Mysql、Pandas及Python列表在大数据查询上的性能,发现Python列表性能最佳,Pandas次之,Mysql最慢。测试数据为72万余行,Python列表查询时间为0.064秒,Pandas为0.433秒,Mysql为0.652秒。
摘要由CSDN通过智能技术生成

原文地址

这篇笔记测试Mysql、Pandas、Python列表的大数据查询性能。

手中有一张72万余行的数据库表,借此机会测试三者的数据查询性能,终于解决内心疑问。

 

测试环境:Ubuntu 20.04 LTS, Python 3.8.2, Intel® Core™ i7-8750H CPU @ 2.20GHz × 12

原数据有8列,724100行,sql文件大小 65.5 MB

数据表第8列为时间,下面用三种方法分别按时间降序,记录每种方法的用时(每种方法测试3次,取平均值)

 

一、Mysql

1.测试性能,通过Python调用Mysql

以下为测试源码

import pandas as pd
import mysql.connector
import datetime


def connect():
    mydb = mysql.connector.connect(
      host="127.0.0.1",
      user="root",
      passwd="sdddddddd",
      database="abc"
    )
    return mydb

def sql(): 
    mydb = connect()  
    mycursor = mydb.cursor() 

    start = datetime.datetime.now()
    mycursor.execute("SELECT * FROM My_table ORDER BY time DESC") #按time列降序
    end = datetime.datetime.now()
    print(end - start) #测试Mysql的排序时间
    
    data_sql = mycursor.fetchall()


    mycursor.close()
    mydb.close()
    return data_sql

def main():
    data_sql = sql()

if __name__ == "__main__":
    main()

测试结果如图

三次取平均值为 0.652s

这只是Python调用Mysql的性能,这和Mysql的真实性能有不同吗?为了避免Python产生的误差,接着再测试一组直接用Mysql查询的性能。

2、测试性能,直接通过Mysql查询

输入如下命令排序查询

SELECT * FROM My_table ORDER BY time DESC

首次测试得到的时间如图

测试3次的时间分别为 0.668s、0.664s、0.702s,平均值 0.678s

由此得出,Python调用Mysql 和 直接使用Mysql查询,性能几乎一致,可忽略不计。

 

二、Pandas

以下为Pandas的测试源码

import pandas as pd
import mysql.connector
import datetime


def connect():
    mydb = mysql.connector.connect(
      host="127.0.0.1",
      user="root",
      passwd="sdddddddd",
      database="abc"
    )
    return mydb

def pa():
    mydb = connect() 
    mycursor = mydb.cursor() 

    
    mycursor.execute("SELECT * FROM eb7_today")
    data_sql = mycursor.fetchall() 

    data = pd.DataFrame(data_sql, columns=['1', '2', '3', '4', '5', '6', '7', 'time']) 
    start = datetime.datetime.now()
    data.sort_values('time', ascending=False, inplace = True) #按time列降序
    end = datetime.datetime.now()
    print(end - start) #测试Pandas的排序时间


    mycursor.close()
    mydb.close()
    return data

def main():
    data = pa()

if __name__ == "__main__":
    main()

下面为测试结果

三次取平均值为 0.433s

 

三、Python列表

以下为Python列表的测试源码

import pandas as pd
import mysql.connector
import datetime


def connect():
    mydb = mysql.connector.connect(
      host="127.0.0.1",
      user="root",
      passwd="sdddddddd",
      database="abc"
    )
    return mydb

def py():
    mydb = connect()
    mycursor = mydb.cursor() 

    
    mycursor.execute("SELECT * FROM My_table")
    data_sql = mycursor.fetchall()

    start = datetime.datetime.now()
    data_sql.sort(key=lambda x:x[7], reverse=True) #按第8列降序(time列)
    end = datetime.datetime.now()
    print(end - start) #测试Python列表的排序时间


    mycursor.close()
    mydb.close()
    return data_sql

def main():
    data_sql = py()

if __name__ == "__main__":
    main()

测试结果如下

三次取平均值为 0.064s

 

四、总结

1.在Python中调用Mysql 和 直接使用Mysql查询,性能几乎一致,可忽略不计。

2.大数据查询性能 Python列表 > Pandas > Mysql

测试数据为,Mysql查询时间  0.652s,Pandas查询时间 0.433s,Python列表查询时间 0.064s

 

看来Python大数据分析性能很强的~

这里想到一个问题,Pandas 基于 NumPy 开发,内部实现由C语言完成,理论性能应该极强,为什么测试中Python列表性能反而强于Pandas?(大概强5倍)希望知道的朋友留言,谢谢!共同进步~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值