题目
给定一个N行N列的棋盘,已知某些格子禁止放置。
求最多能往棋盘上放多少块的长度为2、宽度为1的骨牌,骨牌的边界与格线重合(骨牌占用两个格子),并且任意两张骨牌都不重叠。
输入格式
第一行包含两个整数N和t,其中t为禁止放置的格子的数量。
接下来t行每行包含两个整数x和y,表示位于第x行第y列的格子禁止放置,行列数从1开始。
输出格式
输出一个整数,表示结果。
数据范围
1≤N≤100
输出样例:
8 0
输出样例:
32
思路
- 题目要求一个矩阵内最多能放入多少个12的小方块,这题先要看出来是个二分图的最大匹配问题,首先我们将能组成一个12小方块的格子之间连一条边,那么问题就变成了求最多能有多少条边,也就是最大匹配问题。
代码
#include <cstring>
#include <iostream>
#include <algorithm>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 110;
int n, m;
PII match[N][N];//存下对于每一个点是否被匹配了,匹配点是哪个点
bool g[N][N], st[N][N];
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
bool find(int x, int y)
{
for (int i = 0; i < 4; i ++ )///枚举四个方向
{
int a = x + dx[i], b = y + dy[i];
if (a && a <= n && b && b <= n && !g[a][b] && !st[a][b])
{
st[a][b] = true;
PII t = match[a][b];
if (t.x == -1 || find(t.x, t.y))//如果可以匹配
{
match[a][b] = {x, y};
return true;
}
}
}
return false;
}
int main()
{
cin >> n >> m;
while (m -- )
{
int x, y;
cin >> x >> y;
g[x][y] = true;
}
memset(match, -1, sizeof match);
int res = 0;
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if ((i + j) % 2 && !g[i][j])//如果这两个点可以组成一个1*2的空间,就看看能不能
{
memset(st, 0, sizeof st);
if (find(i, j)) res ++ ;
}
cout << res << endl;
return 0;
}。