AcWing 372. 棋盘覆盖(二分图最大匹配)

该博客讨论了一个二维棋盘问题,其中目标是在给定限制条件下找到最多能放置的长度为2、宽度为1的骨牌数量。题目转化为求解二分图的最大匹配问题,通过使用 Dinic's Algorithm 或匈牙利算法来解决。代码示例展示了如何通过DFS搜索寻找匹配,并计算最终结果。
摘要由CSDN通过智能技术生成

题目

给定一个N行N列的棋盘,已知某些格子禁止放置。

求最多能往棋盘上放多少块的长度为2、宽度为1的骨牌,骨牌的边界与格线重合(骨牌占用两个格子),并且任意两张骨牌都不重叠。

输入格式
第一行包含两个整数N和t,其中t为禁止放置的格子的数量。

接下来t行每行包含两个整数x和y,表示位于第x行第y列的格子禁止放置,行列数从1开始。

输出格式
输出一个整数,表示结果。

数据范围
1≤N≤100
输出样例:
8 0
输出样例:
32

思路

  • 题目要求一个矩阵内最多能放入多少个12的小方块,这题先要看出来是个二分图的最大匹配问题,首先我们将能组成一个12小方块的格子之间连一条边,那么问题就变成了求最多能有多少条边,也就是最大匹配问题。

代码

#include <cstring>
#include <iostream>
#include <algorithm>

#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;

const int N = 110;

int n, m;
PII match[N][N];//存下对于每一个点是否被匹配了,匹配点是哪个点
bool g[N][N], st[N][N];
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};

bool find(int x, int y)
{
    for (int i = 0; i < 4; i ++ )///枚举四个方向
    {
        int a = x + dx[i], b = y + dy[i];
        if (a && a <= n && b && b <= n && !g[a][b] && !st[a][b])
        {
            st[a][b] = true;
            PII t = match[a][b];
            if (t.x == -1 || find(t.x, t.y))//如果可以匹配
            {
                match[a][b] = {x, y};
                return true;
            }
        }
    }

    return false;
}

int main()
{
    cin >> n >> m;

    while (m -- )
    {
        int x, y;
        cin >> x >> y;
        g[x][y] = true;
    }

    memset(match, -1, sizeof match);

    int res = 0;
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if ((i + j) % 2 && !g[i][j])//如果这两个点可以组成一个1*2的空间,就看看能不能
            {
                memset(st, 0, sizeof st);
                if (find(i, j)) res ++ ;
            }

    cout << res << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值