Acwing 372. 棋盘覆盖 (二分图求最大匹配)

棋盘覆盖

题意

给定一个 N 行 N 列的棋盘,已知某些格子禁止放置。

求最多能往棋盘上放多少块的长度为 2、宽度为 1 的骨牌,骨牌的边界与格线重合(骨牌占用两个格子),并且任意两张骨牌都不重叠。

思路

我们将棋盘上的方格看作点,骨牌看作两个点之间的边,那么问题就可以抽象成最多能选取多少条边,使得每条边没有公共顶点。如图:

image-20211007135344287

这时 棋盘还不能看作二分图,不能使用匈牙利算法。

接下来,我们可以将每个点染色,染色方式如下:

image-20211007135539895

将所有点分成两部分:坐标和为奇数的 和 坐标和为偶数的,可以发现,任意一个符合条件的骨牌占用的两个格子一定属于不同种类。

那么我们就可以将问题最终抽象成:在一个二分图中求最大匹配,直接使用匈牙利算法即可

代码
// Author:zzqwtcc
// Problem: 棋盘覆盖
// Contest: AcWing
// Time:2021-10-06 22:52:50
// URL: https://www.acwing.com/problem/content/374/
// Memory Limit: 64 MB
// Time Limit: 1000 ms

#include<bits/stdc++.h>
#include<unordered_map>
// #define int long long
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3f
#define mod 1000000007
#define MOD 998244353
#define rep(i, st, ed) for (int (i) = (st); (i) <= (ed);++(i))
#define pre(i, ed, st) for (int (i) = (ed); (i) >= (st);--(i))
#define debug(x,y) cerr << (x) << " == " << (y) << endl;
using namespace std;

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
template<typename T> inline T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template<typename T> inline T lowbit(T x) { return x & -x; }
// template<typename T> T qmi(T a, T b = mod - 2, T p = mod) { T res = 1; b %= (p - 1 == 0 ? p : p - 1); while (b) { if (b & 1) { res = (LL)res * a % p; }b >>= 1; a = (LL)a * a % p; }return res % mod; }

const int N = 110;
int n,m;
vector<int>vec[N];
PII match[N][N];
bool st[N][N];
bool vis[N][N];
int dx[] = {0,1,0,-1},dy[] = {1,0,-1,0};

bool find(int x,int y){
	for(int i =0 ; i < 4;++i){
		int a = x + dx[i];
		int b = y + dy[i];
		
		if(a <= 0 || a > n || b <= 0 || b > n)continue;
		if(st[a][b] || vis[a][b])continue;
		
		st[a][b] = true;
		PII t = match[a][b];
		if(t.first == 0 || find(t.first,t.second)){
			match[a][b] = {x,y};
			return true;
		}
	}	
	
	return false;
}
void solve() {
    cin >> n >> m;
    for(int i = 1; i <= m;++i){
    	int a,b;cin >> a >> b;
    	vis[a][b] = true;
    }
    
    int res = 0;
    for(int i = 1 ;i <= n;++i){
    	for(int j = 1; j <= n;++j){
    		// 对其中一个点集进行匹配
    		if(!vis[i][j] && (i + j & 1)){
    			memset(st,0,sizeof st);
    			if(find(i,j))res++;
    		}
    	}
    }
    
    cout << res << endl;
}

signed main() {

    // int _; cin >> _;
    // while (_--)
        solve();

    return 0;
}
堆排序是一种高效的排序算法,它利用了堆的数据结构来实现排序。堆是一个完全二叉树,具有以下性质:对于任意节点 i,其父节点的值小于等于子节点的值。 堆排序的基本思路如下: 1. 构建最大堆:将待排序的数组看作是一个完全二叉树,从最后一个非叶子节点开始,依次向上调整每个节点,使得以该节点为根的子树满足最大堆的性质。 2. 将堆顶元素与最后一个元素交换:将最大堆的堆顶元素(即数组的第一个元素)与数组最后一个元素交换位置,此时最大元素就位于数组的最后。 3. 调整堆:将剩余元素重新调整为最大堆。 4. 重复步骤 2 和步骤 3,直到所有元素都排序完成。 以下是堆排序的 C++ 代码实现: ```cpp #include <iostream> using namespace std; // 调整以 root 为根的子树为最大堆 void heapify(int arr[], int n, int root) { int largest = root; // 假设根节点最大 int left = 2 * root + 1; // 左子节点索引 int right = 2 * root + 2; // 右子节点索引 // 若左子节点大于根节点,更新最大值索引 if (left < n && arr[left] > arr[largest]) { largest = left; } // 若右子节点大于最大值节点,更新最大值索引 if (right < n && arr[right] > arr[largest]) { largest = right; } // 若最大值不是根节点,交换根节点和最大值 if (largest != root) { swap(arr[root], arr[largest]); // 递归调整交换后的子树 heapify(arr, n, largest); } } void heapSort(int arr[], int n) { // 构建最大堆 for (int i = n / 2 - 1; i >= 0; i--) { heapify(arr, n, i); } // 逐步取出最大值,调整堆 for (int i = n - 1; i > 0; i--) { swap(arr[0], arr[i]); heapify(arr, i, 0); } } int main() { int arr[] = {4, 10, 3, 5, 1}; int n = sizeof(arr) / sizeof(arr[0]); heapSort(arr, n); cout << "Sorted array: "; for (int i = 0; i < n; i++) { cout << arr[i] << " "; } cout << endl; return 0; } ``` 以上就是堆排序的基本思路和实现方法。堆排序的时间复杂度为 O(nlogn),其中 n 为数组的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzqwtc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值