最小生成树

最小生成树(Minimum Spanning Tree, MST)是一种在加权无向图中找到一个子图,使得子图覆盖所有的顶点,且边的权重之和最小。这个子图应是连通的并且没有环,从而形成一棵树。最小生成树在网络设计、电路设计等领域有着广泛的应用。常用的最小生成树算法有以下几种:

1. 普里姆算法(Prim’s Algorithm)

  • 初始化:从图中的任意顶点开始构建最小生成树。
  • 过程:在已经选取的顶点集合中,找到一条边,其一端是已经选取的顶点,另一端是未选取的顶点,并且这条边的权重最小。
  • 更新:将这条边以及它的未选取端点加入到最小生成树中。
  • 重复以上过程,直到所有的顶点都被选取。
#include <iostream>
#include <vector>
#include <queue>
#include <utility>

using namespace std;

typedef pair<int, int> pii;

const int MAXN = 1000;  // 最大顶点数
vector<pii> adj[MAXN];  // 邻接表
bool visited[MAXN];     // 访问标记

int prim(int n) {
    priority_queue<pii, vector<pii>, greater<pii>> pq;
    int total_cost = 0;
    pq.push({0, 0});  // 从顶点0开始

    while (!pq.empty()) {
        int cost = pq.top().first;
        int u = pq.top().second;
        pq.pop();

        if (visited[u]) {
            continue;
        }
        visited[u] = true;
        total_cost += cost;

        for (auto &edge : adj[u]) {
            int v = edge.first;
            int next_cost = edge.second;
            if (!visited[v]) {
                pq.push({next_cost, v});
            }
        }
    }

    return total_cost;  // 返回最小生成树的总权重
}

int main() {
    int n, m;
    cin >> n >> m;

    for (int i = 0; i < m; ++i) {
        int u, v, w;
        cin >> u >> v >> w;
        adj[u].push_back({v, w});
        adj[v].push_back({u, w});
    }

    cout << "Minimum Cost of MST: " << prim(n) << endl;
    return 0;
}

时间复杂度

  • 使用优先队列实现时,普里姆算法的时间复杂度为 O ( ( V + E ) log ⁡ V ) O((V+E)\log V) O((V+E)logV),其中 V V V 是顶点数, E E E 是边数。
  • 这种时间复杂度适用于稠密图,即边数 E E E 接近 V 2 V^2 V2 的图。

适用场景

  • 普里姆算法特别适用于稠密图,因为它从一个顶点开始构建最小生成树,逐步添加最近的顶点,适合于边比较多的情况。

2. 克鲁斯卡尔算法(Kruskal’s Algorithm)

  • 初始化:将图的所有边按照权重从小到大排序。
  • 过程:遍历排序后的边列表,选择一条边,如果这条边不会与已经选择的边形成环,则加入到最小生成树中。
  • 使用并查集(Disjoint Set Union, DSU)数据结构来帮助检测加入的边是否会形成环。
  • 重复以上过程,直到选取的边数等于顶点数减一。
#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

struct Edge {
    int u, v, weight;
    bool operator<(const Edge& other) const {
        return weight < other.weight;
    }
};

vector<Edge> edges;
int parent[MAXN];

int find(int x) {
    return parent[x] == x ? x : parent[x] = find(parent[x]);
}

void union_set(int x, int y) {
    parent[find(x)] = find(y);
}

int kruskal(int n) {
    sort(edges.begin(), edges.end());
    for (int i = 0; i < n; i++) {
        parent[i] = i;
    }

    int total_cost = 0;
    for (Edge &e : edges) {
        if (find(e.u) != find(e.v)) {
            total_cost += e.weight;
            union_set(e.u, e.v);
        }
    }

    return total_cost;
}

int main() {
    int n, m;
    cin >> n >> m;

    for (int i = 0; i < m; ++i) {
        int u, v, w;
        cin >> u >> v >> w;
        edges.push_back({u, v, w});
    }

    cout << "Minimum Cost of MST: " << kruskal(n) << endl;
    return 0;
}

时间复杂度

  • 克鲁斯卡尔算法的时间复杂度主要受边的排序所影响,为 O ( E log ⁡ E ) O(E \log E) O(ElogE),可以简化为 O ( E log ⁡ V ) O(E \log V) O(ElogV),因为在任何有意义的图中,边数 E E E 最多为 V 2 V^2 V2,而对数函数的增长速率较慢。
  • 使用并查集(Disjoint Set Union)来管理集合的合并和查找操作可以在几乎线性的时间内完成。

适用场景

  • 克鲁斯卡尔算法适合于边权较少的稀疏图,因为它从最小的边开始添加,直到形成最小生成树。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LIHAORAN99

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值