神经网络中的Dropout rate

Dropout是一种正则化技术,用于减少神经网络的过拟合。在训练时,它随机关闭部分神经元,强迫网络学习更稳健的特征表示,防止过度依赖特定节点,降低过拟合风险。在测试阶段,不使用Dropout,但需对激活值进行缩放,以保持输出一致性。
摘要由CSDN通过智能技术生成

通俗理解

在神经网络中,Dropout rate 是一种用于减少过拟合的正则化技术。它是指在训练过程中,随机关闭(将其输出设为0)一定比例的神经元。Dropout rate 是一个在 0 到 1 之间的值,表示在每个训练步骤中被关闭神经元的比例。

当使用 Dropout 时,每次迭代时,网络的部分连接会被随机地断开。这会迫使网络学习到更加稳健的特征表示,因为它不能依赖于任何单个神经元。这样,Dropout 可以防止网络过度依赖某些特征,从而降低过拟合的风险。

在 Test 阶段,通常不使用 Dropout,而是使用所有神经元。为了平衡训练期间的激活值,需要对激活值进行缩放,通常会将激活值乘以(1 - Dropout rate)以保持期望的输出值。

 举个苹果

假设我们有一个简单的神经网络,包含一个输入层、一个隐藏层和一个输出层。我们将在隐藏层应用 Dropout。假设 Dropout rate 为 0.5,即隐藏层中 50% 的神经元将在每次训练迭中被随机关闭。

  1. 输入层(3 个神经元):假设输入数据为 [x_1, x_2, x_3]
  2. 隐藏层(4 个神经元):[h_1, h_2, h_3, h_4]
  3. 输出层(2 个神经元):[o_1, o_2]

在每次训练迭代中,我们首先进行正常的前向传播计算。在计算隐藏层的激活值时,我们将应用 Dropout。

例如,我们随机选择 50% 的神经元关闭,选择关闭 h2h4。我们将它们的激活值设为 0:

[h_1, 0, h_3, 0]

接下来,我们使用这些激活值计算输出层的值。在反向传播过程中,我们根据误差更新权重,但对于关闭的神经元(这里是 h2h4),权重更新会被忽略。

在下一次迭代中,我们可能会选择另一组神经元进行关闭,例如 h_1h_3:  

[0, h_2, 0, h_4]

重要的是要注意,在测试或评估阶段,我们不会应用 Dropout。为了保持期望的输出值,我们需要对激活值进行缩放。在这个例子中,我们将激活值乘以(1 - Dropout rate)= 0.5:

[0.5 \times h_1, 0.5 \times h_2, 0.5 \times h_3, 0.5 \times h_4]

这样,在测试或评估阶段,网络的输出值将与训练阶段保持一致。

以上就是一个简单的神经网络中应用 Dropout 的计算过程示例。需要注意的是,实际应用中的神经网络可能会更复杂,包含多个隐藏层和更多的神经元。但基本原理和计算过程是相似的。

  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LIHAORAN99

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值