方差-偏差困境,一般来说偏差和方差冲突称为方差-偏差困境。在机器学习中,用来衡量模型在未知数据上的准确率的指标,叫做泛化误差(Generalization error)。一个集成模型( f f f)在未知数据集( D D D)上的泛化误差 E ( f ; D ) E(f;D) E(f;D),由方差( v a r var var),偏差( b i a s bias bias)和噪声( ε \varepsilon ε)共同决定。其中方差是模型的稳定性决定,偏差是训练集上的拟合程度决定,噪音是不可控的,泛化误差越小,模型就越理想。
E ( f ; D ) = b i a s 2 + v a r + ε 2 (1) E(f;D)=bias^2+var+\varepsilon^2 \tag{1} E(f;D)=bias2+v
机器学习中的泛化误差
最新推荐文章于 2023-02-04 10:41:32 发布
泛化误差是衡量模型在未知数据上准确率的指标,由偏差、方差和噪声组成。偏差反映模型对训练数据的拟合程度,方差表示模型的稳定性,噪声则是不可控的数据误差。降低泛化误差,需要平衡偏差和方差,以达到理想的模型效果。

最低0.47元/天 解锁文章
1701

被折叠的 条评论
为什么被折叠?



