最短哈密顿路

本文深入探讨了状压DP(状态压缩动态规划)的概念及其在解决复杂组合问题中的应用。通过位运算实现状态压缩,有效减少了状态空间,提高了算法效率。文章以一个具体的编程实例为背景,详细展示了状压DP的实现过程,包括初始化状态、状态转移方程的构建以及最终求解的过程。
摘要由CSDN通过智能技术生成

状压dp(位运算应用)

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
#define ll long long
int map[30][30];
int dp[1<<21][21];
int main()
{
    int n;
    cin>>n;
    for(int i=0;i<n;i++)
    {
    	for(int j=0;j<n;j++)
    	{
    		cin>>map[i][j];
		}
	}
	memset(dp,0x3f,sizeof dp);
	dp[1][0]=0;
	for(int i=1;i<(1<<n);i++)
	{
		for(int j=0;j<n;j++)
		{
			if(!(1&(i>>j))) continue;
			for(int k=0;k<n;k++)
			{
				if((1&(i>>k)))
				dp[i][j]=min(dp[i][j],dp[i^1<<j][k]+map[k][j]);
			}
			
		}
	
		
	}
	cout<<dp[(1<<n)-1][n-1]<<endl;


}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值