最小生成树——Kruskal算法

最小生成树——Kruskal算法

Kruskal算法描述

Kruskal算法是基于贪心的思想得到的。首先我们把所有的边按照权值先从小到大排列,接着按照顺序选取每条边,如果这条边的两个端点不属于同一集合,那么就将它们合并,直到所有的点都属于同一个集合为止。至于怎么合并到一个集合,那么这里我们就可以用到一个工具——-并查集。换而言之,Kruskal算法就是基于并查集的贪心算法

Kruskal算法流程

对于图G(V,E),以下是算法描述:
输入: 图G
输出: 图G的最小生成树
具体流程:
(1)将图G看做一个森林,每个顶点为一棵独立的树
(2)将所有的边加入集合S,即一开始S = E
(3)从S中拿出一条最短的边(u,v),如果(u,v)不在同一棵树内,则连接u,v合并这两棵树,同时将(u,v)加入生成树的边集E’
(4)重复(3)直到所有点属于同一棵树,边集E’就是一棵最小生成树

Kruskal算法的时间复杂度

Kruskal算法每次要从都要从剩余的边中选取一个最小的边。通常我们要先对边按权值从小到大排序,这一步的时间复杂度为为O(|Elog|E|)。Kruskal算法的实现通常使用并查集,来快速判断两个顶点是否属于同一个集合。最坏的情况可能要枚举完所有的边,此时要循环|E|次,所以这一步的时间复杂度为O(|E|α(V)),其中α为Ackermann函数,其增长非常慢,我们可以视为常数。所以Kruskal算法的时间复杂度为O(|Elog|E|)。

问题

省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。

输入

测试输入包含若干测试用例。
每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );
随后的 N 行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。
为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。

输出

对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。

代码

#include <cstdio>
#include <cstdlib>
#define MAXN 10000 + 10
using namespace std;
 
int par[MAXN], Rank[MAXN];
typedef struct{
    int a, b, price;
}Node;
Node a[MAXN];
 
int cmp(const void*a, const void *b){
    return ((Node*)a)->price - ((Node*)b)->price;
}
void Init(int n){
    for(int i = 0; i < n; i++){
        Rank[i] = 0;
        par[i] = i;
    }
}
 
int find(int x){
    int root = x;
    while(root != par[root]) root = par[root];
    while(x != root){
        int t = par[x];
        par[x] = root;
        x = t;
    }
    return root;
}
 
void unite(int x, int y){
    x = find(x);
    y = find(y);
    if(Rank[x] < Rank[y]){
        par[x] = y;
    }
    else{
        par[y] = x;
        if(Rank[x] == Rank[y]) Rank[x]++;
    }
}
//n为边的数量,m为村庄的数量
int Kruskal(int n, int m){
    int nEdge = 0, res = 0;
    //将边按照权值从小到大排序
    qsort(a, n, sizeof(a[0]), cmp);
    for(int i = 0; i < n && nEdge != m - 1; i++){
        //判断当前这条边的两个端点是否属于同一棵树
        if(find(a[i].a) != find(a[i].b)){
            unite(a[i].a, a[i].b);
            res += a[i].price;
            nEdge++;
        }
    }
    //如果加入边的数量小于m - 1,则表明该无向图不连通,等价于不存在最小生成树
    if(nEdge < m-1) res = -1;
    return res;
}
int main(){
    int n, m, ans;
    while(scanf("%d%d", &n, &m), n){
        Init(m);
        for(int i = 0; i < n; i++){
            scanf("%d%d%d", &a[i].a, &a[i].b, &a[i].price);
            //将村庄编号变为0~m-1(这个仅仅只是个人习惯,并非必要的)
            a[i].a--;
            a[i].b--;
        }
        ans = Kruskal(n, m);
        if(ans == -1) printf("?\n");
        else printf("%d\n", ans);
    }
    return 0;
}

运行结果

在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Kruskal算法和Prim算法都可以求解任何一个带权无向连通图的最小生成树。其中,Kruskal算法基于贪心思想,通过不断选择边权值最小且不会形成环的边来构建最小生成树;而Prim算法则是从一个起点开始,每次选择与当前生成树相邻且权值最小的边加入生成树中,直到生成树包含所有节点为止。两种算法的时间复杂度均为O(ElogE),其中E为边数。 ### 回答2: 任何一个带权无向连通图的最小生成树是指在该图中找到一棵包含所有节点的生成树,使得该生成树的边权之和最小。 为了更好地理解最小生成树,我们可以以一个具体的例子来说明。假设有如下一张无向图: ![image.png](https://cdn.luogu.com.cn/upload/pic/24255.png) 这张图中有6个节点和7条边。如果我们需要在该图中找到一棵包含所有节点的生成树,则可以得到如下几个解: - 选择边(1, 2)、(2, 3)、(2, 4)、(3, 5)、(4, 6),生成的树的边权之和为7+2+4+5+1=19 - 选择边(1, 2)、(2, 3)、(2, 4)、(4, 5)、(6, 4),生成的树的边权之和为7+2+4+3+1=17 - 选择边(1, 2)、(2, 4)、(3, 5)、(4, 5)、(4, 6),生成的树的边权之和为7+4+5+3+1=20 可以发现,虽然以上三个解都是包含所有节点的生成树,但其边权之和是不同的。其中,第二个解的边权之和最小,可以称其为该图的最小生成树。 从上述例子中可以看出,在寻找最小生成树时,我们需要在生成树中选择边的过程中,不断地计算边权之和,同时确保所生成的树包含图中所有的节点。这种算法中常用到的是Kruskal算法和Prim算法Kruskal算法依据的是贪心策略,每次选择边权最小并且不与已选择的边构成环的边,依次将这些边加入生成树中。最终的生成树即为最小生成树。 Prim算法也是一种贪心算法,其选择边的方式与Kruskal算法不同。Prim算法从任一节点出发,每次将与当前生成树距离最短的未选择的节点连接起来,逐步扩大生成树的范围,直到所有节点都被包含在生成树中。最终的生成树即为最小生成树。 总之,最小生成树是一个经典的图论问题,在实际应用中具有广泛的价值和意义。了解并掌握相应的算法,可以有效地解决实际问题,提高数据处理的效率。 ### 回答3: 最小生成树,也被称为MST(Minimum Spanning Tree),是指在一张带权图中,将所有节点彼此连接起来且总权值最小的树。在实际应用中,最小生成树可以帮助我们寻找最优的物流路径、路网系统等问题。 任何一个带权无向连通图的最小生成树,可以使用Prim算法Kruskal算法来计算。这两种算法都是贪心算法,用来选择权值最小的边来构建最小生成树。 Prim算法基于节点,从一个固定的起点开始构建最小生成树,每次在当前生成树中找到最近的未加入节点,然后加入这个节点到当前树中去。Prim算法通过建立一个优先队列,不断地选取权值最小的边来构建最小生成树Kruskal算法基于边,将所有边按照权值从小到大排序,每次选择一条没有形成环的边加入生成树中。如果新加入一条边会形成环,则不加入这条边,并选择一条权值更小的边。Kruskal算法通过并查集来判断是否产生环,并在遍历完所有边之后得到最小生成树。 需要注意的是,如果带权图不是连通图,那么最小生成树就不存在。如果要处理非连通图,可以先把图进行连通分量的划分,然后再对每个连通分量分别求最小生成树。 总之,无论是Prim算法还是Kruskal算法,对于任何一个带权无向连通图,都可以用贪心算法来求出最小生成树。这样的最小生成树可以帮助我们寻找最优的路径,优化网络,使得节点之间连接更加紧密,大大提高了系统的可靠性和效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值