这里是 MIT 18.06 Gilbert Strang《线性代数》笔记汇总.
AB 的逆矩阵:
A
⋅
A
−
1
=
I
=
A
−
1
⋅
A
(
A
B
)
⋅
(
B
−
1
A
−
1
)
=
I
则
A
B
的逆矩阵为
B
−
1
A
−
1
\begin{aligned} A \cdot A^{-1} = I & = A^{-1} \cdot A\\ (AB) \cdot (B^{-1}A^{-1}) & = I\\ \textrm{则} AB \textrm{的逆矩阵为} & B^{-1}A^{-1} \end{aligned}
A⋅A−1=I(AB)⋅(B−1A−1)则AB的逆矩阵为=A−1⋅A=IB−1A−1
A
T
A^{T}
AT 的逆矩阵:
(
A
⋅
A
−
1
)
T
=
I
T
(
A
−
1
)
T
⋅
A
T
=
I
则
A
T
的逆矩阵为
(
A
−
1
)
T
\begin{aligned} (A \cdot A^{-1})^{T} & = I^{T}\\ (A^{-1})^{T} \cdot A^{T} & = I\\ \textrm{则} A^{T} \textrm{的逆矩阵为} & (A^{-1})^{T} \end{aligned}
(A⋅A−1)T(A−1)T⋅AT则AT的逆矩阵为=IT=I(A−1)T
A 的 LU 分解
我们熟悉的消元法都是直接使用行变换得来的。而由于消元矩阵的存在,说明用矩阵乘法也可以达到与之一样的消元效果。所以,现在的假设有可逆矩阵 A ,若有 A ⟶ 初等行变换 U (上三角矩阵) \mathrm{A} \underset{\text { 初等行变换 }} \longrightarrow \mathrm{U} \text { (上三角矩阵) } A 初等行变换 ⟶U (上三角矩阵) ,就一定有 E 21 ∗ A = U E_{21} * \mathrm{~A}=\mathrm{U} E21∗ A=U 的等式存在,相当于使 A 进行了初等行变换成为 U 。而我们已经学习了逆矩阵,$E_{21} $ 这样的矩阵一定有逆矩阵,因为它本身 就是单位阵变化过来的。所以原式可以改写成: A = ( E 21 ) − 1 U A=\left(E_{21}\right)^{-1} \mathrm{U} A=(E21)−1U。这一形式即为 A = LU 形式,这个过程就是分解过程。
那么矩阵 L 是不是有什么特殊之处呢?通过下面一道例题来探讨一下
这就给了我们启示,在使用 A = LU 分解矩阵的时候,我们只需要从 U 入手,反过来考虑,看如何通过行变换可以将上三角矩阵 U 变为 L,然后再将单位阵按此形式变化,就得到了 L 矩阵。这个性质也是 A = LU 形式分解矩阵的 最大优点,我们甚至不需要知道类似的值到底是什么,我们只需要知道变换形式, 即可求出 L,写出 A = LU 等式
置换矩阵
置换矩阵是一个方形二进制矩阵,它在每行和每列中只有一个1,而在其他地方则为0。
我们之前接触过行变换所用到的矩阵,即是将单位阵 I I I 按照对应行变换方式进行操作之后得到的矩阵。它可以交换矩阵中的两行,代替矩阵行变换。什么时候需要使用矩阵行变换呢?一个经典的例子就是:在消元过程中,当矩阵主元位置上面不是 1 时,我们就需要用行变换将主元位置换回 1。 这样的由单位阵变换而来的矩阵,通过矩阵乘法可以使被乘矩阵行交换。我们将这样的矩阵称为置换矩阵 P。
通过一个例子来熟悉一下置换矩阵:求三阶单位矩阵的所有置换矩阵。
[
1
0
0
0
1
0
0
0
1
]
[
0
1
0
1
0
0
0
0
1
]
[
0
0
1
0
1
0
1
0
0
]
[
1
0
0
0
0
1
0
1
0
]
[
0
1
0
0
0
1
1
0
0
]
[
0
0
1
1
0
0
0
1
0
]
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix}
⎣⎡100010001⎦⎤⎣⎡010100001⎦⎤⎣⎡001010100⎦⎤⎣⎡100001010⎦⎤⎣⎡001100010⎦⎤⎣⎡010001100⎦⎤
3阶方阵的置换矩阵有6个:
n阶方阵的置换矩阵有 ( n 1 ) = n ! \binom{n}{1}=n! (1n)=n! 个。