MIT 18.06 Gilbert Strang《线性代数》L4. A 的 LU 分解

这里是 MIT 18.06 Gilbert Strang《线性代数》笔记汇总.

AB 的逆矩阵:
A ⋅ A − 1 = I = A − 1 ⋅ A ( A B ) ⋅ ( B − 1 A − 1 ) = I 则 A B 的逆矩阵为 B − 1 A − 1 \begin{aligned} A \cdot A^{-1} = I & = A^{-1} \cdot A\\ (AB) \cdot (B^{-1}A^{-1}) & = I\\ \textrm{则} AB \textrm{的逆矩阵为} & B^{-1}A^{-1} \end{aligned} AA1=I(AB)(B1A1)AB的逆矩阵为=A1A=IB1A1
A T A^{T} AT 的逆矩阵:
( A ⋅ A − 1 ) T = I T ( A − 1 ) T ⋅ A T = I 则 A T 的逆矩阵为 ( A − 1 ) T \begin{aligned} (A \cdot A^{-1})^{T} & = I^{T}\\ (A^{-1})^{T} \cdot A^{T} & = I\\ \textrm{则} A^{T} \textrm{的逆矩阵为} & (A^{-1})^{T} \end{aligned} (AA1)T(A1)TATAT的逆矩阵为=IT=I(A1)T


A 的 LU 分解

我们熟悉的消元法都是直接使用行变换得来的。而由于消元矩阵的存在,说明用矩阵乘法也可以达到与之一样的消元效果。所以,现在的假设有可逆矩阵 A ,若有 A ⟶  初等行变换  U  (上三角矩阵)  \mathrm{A} \underset{\text { 初等行变换 }} \longrightarrow \mathrm{U} \text { (上三角矩阵) } A 初等行变换 U (上三角矩阵,就一定有 E 21 ∗   A = U E_{21} * \mathrm{~A}=\mathrm{U} E21 A=U 的等式存在,相当于使 A 进行了初等行变换成为 U 。而我们已经学习了逆矩阵,$E_{21} $ 这样的矩阵一定有逆矩阵,因为它本身 就是单位阵变化过来的。所以原式可以改写成: A = ( E 21 ) − 1 U A=\left(E_{21}\right)^{-1} \mathrm{U} A=(E21)1U。这一形式即为 A = LU 形式,这个过程就是分解过程。

那么矩阵 L 是不是有什么特殊之处呢?通过下面一道例题来探讨一下
在这里插入图片描述

这就给了我们启示,在使用 A = LU 分解矩阵的时候,我们只需要从 U 入手,反过来考虑,看如何通过行变换可以将上三角矩阵 U 变为 L,然后再将单位阵按此形式变化,就得到了 L 矩阵。这个性质也是 A = LU 形式分解矩阵的 最大优点,我们甚至不需要知道类似的值到底是什么,我们只需要知道变换形式, 即可求出 L,写出 A = LU 等式


置换矩阵

置换矩阵是一个方形二进制矩阵,它在每行和每列中只有一个1,而在其他地方则为0。

我们之前接触过行变换所用到的矩阵,即是将单位阵 I I I 按照对应行变换方式进行操作之后得到的矩阵。它可以交换矩阵中的两行,代替矩阵行变换。什么时候需要使用矩阵行变换呢?一个经典的例子就是:在消元过程中,当矩阵主元位置上面不是 1 时,我们就需要用行变换将主元位置换回 1。 这样的由单位阵变换而来的矩阵,通过矩阵乘法可以使被乘矩阵行交换。我们将这样的矩阵称为置换矩阵 P。

通过一个例子来熟悉一下置换矩阵:求三阶单位矩阵的所有置换矩阵。
[ 1 0 0 0 1 0 0 0 1 ] [ 0 1 0 1 0 0 0 0 1 ] [ 0 0 1 0 1 0 1 0 0 ] [ 1 0 0 0 0 1 0 1 0 ] [ 0 1 0 0 0 1 1 0 0 ] [ 0 0 1 1 0 0 0 1 0 ] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix} 100010001010100001001010100100001010001100010010001100
3阶方阵的置换矩阵有6个:

n阶方阵的置换矩阵有 ( n 1 ) = n ! \binom{n}{1}=n! (1n)=n! 个。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值