MIT线性代数笔记04-矩阵A的LU分解

Linear Algebra-Lecture04 矩阵A的LU分解

Gilbert Strang

矩阵乘积的逆



A \bf A A都逆矩阵存在,则 A A − 1 = I = A − 1 A \bf A \bf A^{-1}=\bf I =\bf A^{-1} \bf A AA1=I=A1A

A \bf A A B \bf B B的逆矩阵都存在,则 ( A B ) − 1 = B − 1 A − 1 \bf {(AB)^{-1}}=\bf B^{-1}\bf A^{-1} (AB)1=B1A1
解释: ( A B ) B − 1 A − 1 = A ( B B − 1 ) A − 1 = I \bf{(AB)}\bf B^{-1}A^{-1}=\bf{A(BB^{-1})A^{-1}}=\bf I (AB)B1A1=A(BB1)A1=I,因此 A B \bf {AB} AB的逆矩阵为 B − 1 A − 1 \bf B^{-1}\bf A^{-1} B1A1

转置的逆

A A − 1 = I ⇒ ( A A − 1 ) T = I T ⇒ ( A − 1 ) T A T = I \bf A \bf A^{-1}=\bf I\qquad\Rightarrow\bf {(A A^{-1})^T}=\bold{I}^T\qquad\Rightarrow\bf {(A^{-1})^TA^T}=\bold{I} AA1=I(AA1)T=IT(A1)TAT=I,因此, A T \bf A^T AT的逆为 ( A − 1 ) T \bf (A^{-1})^T (A1)T,即 ( A T ) − 1 = ( A − 1 ) T \bf (A^T)^{-1}=\bf (A^{-1})^T (AT)1=(A1)T,换句话说,对于单个矩阵而言,转置和逆两种运算,其顺序可以颠倒。

LU分解

A = [ 2 1 8 7 ] \bf A=\begin{bmatrix}2&1\\8&7\end{bmatrix} A=[2817],用初等矩阵 E 21 = [ 1 0 − 4 1 ] \bf E_{21}=\begin{bmatrix}1&0\\-4&1\end{bmatrix} E21=[1401]进行行变换,可得到上三角矩阵 U = [ 2 1 0 3 ] \bf U=\begin{bmatrix}2&1\\0&3\end{bmatrix} U=[2013].
E 21 A = U [ 1 0 − 4 1 ] [ 2 1 8 7 ] = [ 2 1 0 3 ] \begin{array}{cccc} \bf E_{21}&\bf A&=&\bf U\\ \begin{bmatrix}1&0\\-4&1\end{bmatrix}&\begin{bmatrix}2&1\\8&7\end{bmatrix}&=&\begin{bmatrix}2&1\\0&3\end{bmatrix} \end{array} E21

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值