动态规划算法解决爬楼梯问题

Problem: 70. 爬楼梯

思路

典型的动态规划算法题
最优子结构:f(n-1) + f(n-2)
状态转移方程:f(n) = f(n-1) + f(n-2)
边界:f(1) = 1; f(2) = 2
重叠子问题:f(9) = f(8) + f(7); f(8) = f(7) + f(6)

解题方法

利用动态规划算法,用for循环,从最底层子问题计算出结果并存储下来,往上叠加结果知道计算出最终结果

复杂度

  • 时间复杂度:

O ( n ) O(n) O(n)

  • 空间复杂度:

O ( 1 ) O(1) O(1)

Code


class Solution {
    func climbStairs(_ n: Int) -> Int {
        if n == 1 {
            return 1
        } else if n == 2 {
            return 2
        }
        
        var a = 1
        var b = 2
        var temp = 0
        for i in 3...n {
            temp = a + b
            a = b
            b = temp
        }
        return temp
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值