window11 gpu环境配置

本文详细记录了如何通过Anaconda安装环境,PyCharm配置Python环境,以及如何为CUDA和CUDNN设置并安装TensorFlow和PyTorch,适合初学者快速上手。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小白记录自己学习的过程, 每天记录一点点

Anaconda 安装

Anaconda官网
直接点击下载即可
下载完成直接点击exe文件文件进行安装,无需特别注意, 直接默认配置安装。以下自动添加到环境变量选项需要勾选:
在这里插入图片描述

pycharm 安装

pycharm官网添加链接描述

下载社区版本即可
下载完成后直接点击exe文件进行安装,点击默认配置安装即可。
在这里插入图片描述
安装完成立即重启
重启完成后打开pycharm。 新建project,,其他选项根据个人爱好,其中python环境选择conda/base
在这里插入图片描述
至此pycharm安装完成

cuda的安装

查看自己的驱动版本
在这里插入图片描述
cuda官网
进入到官网下载。
选择与自己驱动版本匹配的cuda,,点击下载。 如果没有与自己版本匹配的cuda, 建议下载cuda11.3,然后反向更新自己的驱动程序, 在不确定驱动版本与cuda版本是否匹配时, 不要贸然向下进行。
点击下载的exe文件进行安装, 除以下配置外其他都可直接按照默认配置安装。
在这里插入图片描述

cudnn官网
找到对应的版本,按照官网指导进行安装
一定要在完成安装之后添加环境变量到PATH里(官网上安装步骤已经又说明):

安装 tensorflow

win+R 进入命令行模式 输入 pip install tensorflow-gpu

安装pytorch

pytorch官网
在这里插入图片描述
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
有的时候conda install, 不能使用, 切换成pip install即可。 如果pip安装过非gpu版本pytorch, 直接使用pip安装系统可能直接加载本地安装包,导致又安装了非gpu版本的pytorch.,使用以下命令安装即可。
pip install torch=1.2.0 torchvision=0.4.0 -f https://download.pytorch.org/whl/torch_stable.html

要在Windows环境中通过Ollama调用GPU,你需要按照以下几个步骤进行配置: 1. **安装CUDA Toolkit**:首先需要从英伟达(NVIDIA)官网下载并安装适合你显卡型号以及操作系统版本的CUDA工具包。 2. **设置环境变量**:将CUDA bin目录添加到系统的PATH环境变量中,并创建一个新的名为`CUDA_HOME`指向CUDA安装路径的系统变量。 3. **验证安装**:打开命令提示符输入 `nvcc -V` 来检查是否能正确显示已安装的CUDA版本信息。 4. **获取cuDNN库文件**:前往[NVIDIA cuDNN](https://developer.nvidia.com/cudnn)页面注册账号后下载对应版本的cudnn library,并将其解压至CUDA Toolkit安装位置下的相应文件夹内(`include`, `lib/x64`)。 5. **调整PyTorch或TensorFlow等框架支持GPU加速**:如果你正在使用的深度学习框架是PyTorch或者TensorFlow的话,则还需要额外确保它们是以能够利用GPU的方式构建出来的。对于pip用户来说可以直接指定带有cuda标签的轮子(wheel),例如: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` 6. **编写Python脚本测试Ollama能否识别出GPU设备**:最后可以参考官方文档提供的示例代码片段,在python script里加入类似下面这样的几行来确认程序已经成功连接上了GPU资源。 ```python import ollama as ol device = "cuda" if ol.cuda_is_available() else "cpu" print(f"Using device {device}") ``` 完成上述所有操作之后应该就可以顺利地让Ollama项目在Windows平台上借助于GPU来进行高效计算了!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值