如果一个数列至少有三个元素,并且任意两个相邻元素之差相同,则称该数列为等差数列。
例如,以下数列为等差数列:
1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9
以下数列不是等差数列。
1, 1, 2, 5, 7
数组 A 包含 N 个数,且索引从0开始。数组 A 的一个子数组划分为数组 (P, Q),P 与 Q 是整数且满足 0<=P<Q<N 。
如果满足以下条件,则称子数组(P, Q)为等差数组:
元素 A[P], A[p + 1], …, A[Q - 1], A[Q] 是等差的。并且 P + 1 < Q 。
函数要返回数组 A 中所有为等差数组的子数组个数。
示例:
A = [1, 2, 3, 4]
返回: 3, A 中有三个子等差数组: [1, 2, 3], [2, 3, 4] 以及自身 [1, 2, 3, 4]。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/arithmetic-slices
分析:
将所有的子数组分类,以数组某个位置结束的等差子数组为一类。之后可发现dp[i] = dp[i-1] + 1的递推式。使用动态规划解决。
dp[2] = 1
[0, 1, 2]
dp[3] = dp[2] + 1 = 2
[0, 1, 2, 3], // [0, 1, 2] 之后加一个 3
[1, 2, 3] // 新的递增子区间
dp[4] = dp[3] + 1 = 3
[0, 1, 2, 3, 4], // [0, 1, 2, 3] 之后加一个 4
[1, 2, 3, 4], // [1, 2, 3] 之后加一个 4
[2, 3, 4] // 新的递增子区间
class Solution {
public int numberOfArithmeticSlices(int[] A) {
if (A == null || A.length <= 2) return 0;
int[] dp = new int[A.length];
dp[0] = 0;
dp[1] = 0;
for (int i = 2; i < A.length; ++i) {
if (A[i] - A[i-1] == A[i-1] - A[i-2]) {
dp[i] = dp[i-1] + 1;
}
}
int res = 0;
for (int i : dp) {
res += i;
}
return res;
}
}