月饼是中国人在中秋佳节时吃的一种传统食品,不同地区有许多不同风味的月饼。现给定所有种类月饼的库存量、总售价、以及市场的最大需求量,请你计算可以获得的最大收益是多少。
注意:销售时允许取出一部分库存。样例给出的情形是这样的:假如我们有 3 种月饼,其库存量分别为 18、15、10 万吨,总售价分别为 75、72、45 亿元。如果市场的最大需求量只有 20 万吨,那么我们最大收益策略应该是卖出全部 15 万吨第 2 种月饼、以及 5 万吨第 3 种月饼,获得 72 + 45/2 = 94.5(亿元)。
输入格式:
每个输入包含一个测试用例。每个测试用例先给出一个不超过 1000 的正整数 N 表示月饼的种类数、以及不超过 500(以万吨为单位)的正整数 D 表示市场最大需求量。随后一行给出 N 个正数表示每种月饼的库存量(以万吨为单位);最后一行给出 N 个正数表示每种月饼的总售价(以亿元为单位)。数字间以空格分隔。
输出格式:
对每组测试用例,在一行中输出最大收益,以亿元为单位并精确到小数点后 2 位。
输入样例:
3 20
18 15 10
75 72 45
输出样例:
94.50
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 1000
double x[MAXN]={0};
struct Goods{
int no;
double w;
double v;
double p;
}goods[MAXN];
bool comp(Goods a,Goods b)
{
return a.p>=b.p;
}
void input(int n)
{
int i;
for(i=1;i<=n;i++)
{
goods[i].no=i;
cin>>goods[i].w;
}
for(int k=1;k<=n;k++)
{
cin>>goods[k].v;
}
for(int j=1;j<=n;j++)
{
goods[j].p=goods[j].v/goods[j].w;
}
}
void bag(int n,double c)
{
int i;
double totalValue=0;
for(i=1;i<=n;i++)
{
if(c>=goods[i].w)
{
x[goods[i].no]=1;
totalValue+=goods[i].v;
c-=goods[i].w;
}
else{
x[goods[i].no]=c/goods[i].w;
totalValue+=goods[i].p*c;
break;
}
}
printf("%.2f\n",totalValue);
}
int main()
{
int n;
double c;
cin>>n>>c;
input(n);
sort(goods+1,goods+n+1,comp);
bag(n,c);
return 0;
}
数组的容量尽量大一点,不然会溢出,我之前用的200,都被判断为溢出。