Flink各版本的官方文档连接
Flink 1.10
Flink 1.11
Flink 1.12
Flink 1.13
Time

Event Time:是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink 通过时间戳分配器访问事件时间戳。
Ingestion Time:是数据进入 Flink 的时间。
Processing Time:是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是 Processing Time。
水位线(Watermark)
怎样避免乱序数据带来计算不正确?
1、遇到一个时间戳达到了窗口关闭时间,不应该立刻去触发窗口计算,而是等待一段时间,等迟到的数据来了再关闭窗口。
2、Watermark是一种衡量event time进展的机制,可以设定延迟触发。
3、Watermark是用于处理乱序事件的,而正确的处理乱序事件,通常用watermaek机制结合window来实现。
4、数据流中的watermark用于表示timestamp小于watermark的数据,都已经到达了,因此,window的执行也是由watermark触发的。
5、Watermark用来让程序自己平衡延迟和结果正确性。
Watermark的特点
1、watermark一条特殊的数据记录
2、watermark必须单调递增,以确保任务的事件时间时钟在向前推进,而不是在后退
3、watermark与数据的时间戳相关
Watermark的传递
窗口(Window)
1、时间语义,要配合窗口操作才能发挥作用
2、在TableAPI和SQL中,主要有两种窗口:
Group Windows(分组窗口)
-根据时间或行计数间隔,将行聚合到有限的组(Group)中,并对每个组的数据执行一次聚合函数
-Group windows是使用window(w:GroupWindow)子句定义的,并且必须由as子句指定一个别名
-为了按窗口对表进行分组,窗口的别名必须在group by子句中,像常规的分组字段一样引用
-Table API提供了一组具有特定语义的预定义window类,这些类会被转换为底层DataStream或DataSet的窗口操作
滚动窗口(Tumbing windows)
-滚动窗口要用Tumble类来定义
//Tumbling Event-time Window
.window(Tumble.over(“10.minutes”).on(“rowtime”).as(“w”))
//Tumbling Processing-time Window
.window(Tumble.over(“10.minutes”).on(“proctime”).as(“w”))
//Tumbling Row-count Window
.window(Tumble.over(“10.rows”).on(“proctime”).as(“w”))
滑动窗口(Sliding windows)
-滑动窗口要用Slide类来定义
//Sliding Event-time Window
.window(Slide.over(“10.minutes”).every(“5.minutes”).on(“rowtime”).as(“w”))
//Sliding Processing-time Window
.window(Slide.over(“10.minutes”).every(“5.minutes”).on(“proctime”).as(“w”))
//Sliding Row-count Window
.window(Slide.over(“10.rows”).every(“5.rows”).on(“proctime”).as(“w”))
会话窗口(Session )
Over Windows
-针对每个输入行,计算相邻范围内的聚合
CountWindow:按照指定的数据条数生成一个 Window,与时间无关。
TimeWindow:按时间生成Window。
对于 TimeWindow,可以根据窗口实现原理的不同分成三类:滚动窗口(Tumbling Window)、滑动窗口(Sliding Window)和会话窗口(Session Window)。
1、滚动窗口(Tumbling Window)
将数据依据固定的窗口长度对数据进行切片。
特点:时间对齐,窗口长度固定,没有重叠。
滚动窗口分配器将每个元素分配到一个指定窗口大小的窗口中,滚动窗口有一个固定的大小,并且不会出现重叠。例如:如果你指定了一个 5 分钟大小的滚动窗口,窗口的创建如下图所示:
适合场景:适合做 BI 统计等(做每个时间段的聚合计算)。
2、滑动窗口(Sliding Window)
滑动窗口是固定窗口的更广义的一种形式,滑动窗口由固定的窗口长度和滑动
间隔组成。
特点:时间对齐,窗口长度固定,有重叠。
滑动窗口分配器将元素分配到固定长度的窗口中,与滚动窗口类似,窗口的大小由窗口大小参数来配置,另一个窗口滑动参数控制滑动窗口开始的频率。因此,滑动窗口如果滑动参数小于窗口大小的话,窗口是可以重叠的,在这种情况下元素会被分配到多个窗口中。
例如,你有 10 分钟的窗口和 5 分钟的滑动,那么每个窗口中 5 分钟的窗口里包含着上个 10 分钟产生的数据,如下图所示:
适用场景:对最近一个时间段内的统计(求某接口最近 5min 的失败率来决定是否要报警)。
3、会话窗口(Session Window)
由一系列事件组合一个指定时间长度的 timeout 间隙组成,类似于 web 应用的session,也就是一段时间没有接收到新数据就会生成新的窗口。
特点:时间无对齐。
session 窗口分配器通过 session 活动来对元素进行分组,session 窗口跟滚动窗口和滑动窗口相比,不会有重叠和固定的开始时间和结束时间的情况,相反,当它在一个固定的时间周期内不再收到元素,即非活动间隔产生,那个这个窗口就会关闭。一个 session 窗口通过一个 session 间隔来配置,这个 session 间隔定义了非活跃周期的长度,当这个非活跃周期产生,那么当前的 session 将关闭并且后续的元素将被分配到新的 session 窗口中去。