一、概述
算法特点:
一个问题的求解需一系列的计算,在已知条件和所求问题之间总存在着某种相互联系的关系,在计算时,如果可以找到前后过程之间的数量关系(即递推式)。那么,从问题出发逐步推到已知条件,此种方法叫逆推。无论顺推还是逆推,其关键是要找到递推式。
二、例题
例1:
数字三角形。如下所示为一个数字三角形。请编一个程序计算从顶到底的某处的一条路径,使该路径所经过的数字总和最大。只要求输出总和。
1、 一步可沿左斜线向下或右斜线向下走;
2、 三角形行数小于等于100;
3、 三角形中的数字为0,1,…,99;
测试数据通过键盘逐行输入,如上例数据应以如下所示格式输入:
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
代码如下:
#include<iostream>
using namespace std;
int main()
{
int n,i,j,a[101][101];
cin>>n;
for (i=1;i<=n;i++)
for (j=1;j<=i;j++)
cin>>a[i][j];
for (i=n-1;i>=1;i--)
for (j=1;j<=i;j++)
{
if (a[i+1][j]>=a[i+1][j+1]) a[i][j]+=a[i+1][j];
else a[i][j]+=a[i+1][j+1];
}
cout<<a[1][1]<<endl;}
例2:
满足F1=F2=1,Fn=Fn-1+Fn-2的数列称为斐波那契数列(Fibonacci),它的前若干项是1,1,2,3,5,8,13,21,34……求此数 列第n项(n>=3)。
代码如下:
非递归方法:
#include<iostream>
using namespace std;
int sum(int y,int b[100])
{
for(int j=2;j<y;j++)
{b[j]=b[j-1]+b[j-2];}
return b[y-1];
}
int main()
{
int n,x,b[100];
b[0]=b[1]=1;
cin>>n;
for(int i=1;i<=n;i++)
{cin>>x;
cout<<sum(x,b);}
}
递归方法:
#include<iostream>
using namespace std;
int Fbi(int i)
{
if (i<2)
{
return i=1;
}
return Fbi(i-1)+Fbi(i-2);
}
int main()
{
int n,x;
cin>>n;
for(int i=1;i<=n;i++)
{cin>>x;
cout<<Fbi(x-1)<<endl;}
}
例3:
楼梯有N级台阶,上楼可以一步上一阶,也可以一步上二阶。
编一递归程序,计算共有多少种不同走法?
代码如下:
#include<iostream>
using namespace std;
int Fbi(int i)
{
if(i==1)return 1;
if(i==2)return 2;
else return Fbi(i-1)+Fbi(i-2);
}
int main()
{ int n;
while(cin>>n)
{
cout<<Fbi(n)<<endl;
}
}