算法笔记2——递推算法

一、概述

在这里插入图片描述

算法特点:

一个问题的求解需一系列的计算,在已知条件和所求问题之间总存在着某种相互联系的关系,在计算时,如果可以找到前后过程之间的数量关系(即递推式)。那么,从问题出发逐步推到已知条件,此种方法叫逆推。无论顺推还是逆推,其关键是要找到递推式。

二、例题

例1:

数字三角形。如下所示为一个数字三角形。请编一个程序计算从顶到底的某处的一条路径,使该路径所经过的数字总和最大。只要求输出总和。
  1、 一步可沿左斜线向下或右斜线向下走;
  2、 三角形行数小于等于100;
3、 三角形中的数字为0,1,…,99;
测试数据通过键盘逐行输入,如上例数据应以如下所示格式输入:
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5

代码如下:

#include<iostream>
using namespace std;
int main()
{
  int n,i,j,a[101][101];
  cin>>n;
  for (i=1;i<=n;i++)
   for (j=1;j<=i;j++)
     cin>>a[i][j];
  for (i=n-1;i>=1;i--)
   for (j=1;j<=i;j++)
     {
       if (a[i+1][j]>=a[i+1][j+1]) a[i][j]+=a[i+1][j];
       else  a[i][j]+=a[i+1][j+1];
     }
cout<<a[1][1]<<endl;}
例2:

满足F1=F2=1,Fn=Fn-1+Fn-2的数列称为斐波那契数列(Fibonacci),它的前若干项是1,1,2,3,5,8,13,21,34……求此数 列第n项(n>=3)。

代码如下:

非递归方法:
#include<iostream>
using namespace std;
int sum(int y,int b[100])
{
    for(int j=2;j<y;j++)
    {b[j]=b[j-1]+b[j-2];}
    return b[y-1];
}
int main()
{
    int n,x,b[100];
    b[0]=b[1]=1;
    cin>>n;
    for(int i=1;i<=n;i++)
    {cin>>x;
    cout<<sum(x,b);}

}
递归方法:
#include<iostream>
using namespace std;

int Fbi(int i)
 {
    if (i<2)
    {
        return i=1;
    }
    return Fbi(i-1)+Fbi(i-2);
 }

 int main()
 {
   int n,x;
   cin>>n;
 for(int i=1;i<=n;i++)
 {cin>>x;
  cout<<Fbi(x-1)<<endl;}

 }
例3:

楼梯有N级台阶,上楼可以一步上一阶,也可以一步上二阶。
编一递归程序,计算共有多少种不同走法?

代码如下:
#include<iostream>
using namespace std;

int Fbi(int i)
 {
    if(i==1)return 1;
    if(i==2)return 2;
    else return Fbi(i-1)+Fbi(i-2);
 }

 int main()
 { int n;
  while(cin>>n)
  {
      cout<<Fbi(n)<<endl;
  }

 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值