DAMA 2.0数据治理框架的知识点主要包括以下几个方面:
数据治理框架
- 车轮图:展示了数据管理知识领域的相互依赖关系,其中数据治理位于中心,其他领域如数据体系结构、数据建模等围绕其平衡。
- 环境因素六边形图:强调了人、流程和技术之间的关系,以及它们如何共同影响数据管理实践
数据治理的关键要素
- 数据治理战略:定义并概述了组织内部数据治理的目标和方向,指导决策和资源分配
- 数据质量标准:确保数据的准确性、一致性和可靠性
- 数据和分析管理:正确管理数据分析,并保持对数据和分析活动的治理
- 元数据管理:对数据资产、其使用情况和相关元数据的理解和管理
- 数据安全和隐私:监管合规、防止数据泄露和管理数据使用权限
数据治理的实施步骤
- 制定详细计划:涵盖项目的各个阶段,包括开始、执行、监控和收尾
- 逐步推进数据治理流程:包括数据收集与整合、数据清洗与转换、数据存储与管理
- 建立数据治理沟通机制:确保数据治理团队、业务部门、IT部门等相关方能够及时、有效地沟通
- 持续监控与改进数据治理效果:设定监控指标,通过定期收集和分析指标数据,了解数据治理项目的实施效果
- 培养数据治理文化:提高员工的数据意识和数据素养
DAMA 2.0数据治理框架通过这些知识点,为组织提供了一套系统的数据管理方法,确保数据的可靠性、一致性、安全性和有效性,从而支持组织的决策和业务发展。