哪些问题可用动态规划思想来解决

动态规划是一种优化技术,由贝尔曼在20世纪50年代提出,常用于解决最优化问题。其核心在于将大问题分解为子问题,并利用子问题的最优解来构建整体最优解。动态规划适用条件包括问题的最优解性、子问题重叠和自底向上的求解思路。常见应用包括背包问题、最短路径问题和资源分配等。问题通常涉及求最大值/最小值、判断可行性或计数。若问题要求所有方案,则不宜用动态规划解决。
摘要由CSDN通过智能技术生成

动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域,并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了显著的效果

动态规划是求解决策过程最优化的数学方法。如果一个问题可以分解成若干个子问题,并且子问题之间还有重叠的更小的子问题,就可以考虑用动态规划来解决这个问题。应用动态规划之前要分析能否把大问题分解成小问题,分解后的每个小问题也存在最优解。如果将小问题的最优解组合起来能够得到整个问题的最优解,那么就可以使用动态规划解决问题。

可以应用动态规划求解的问题主要由四个特点:

  1. 问题是求最优解
  2. 整体问题的最优解依赖于各个子问题的最优解
  3. 大问题分解成若干小问题,这些小问题之间还有相互重叠的更小的子问题
  4. 从上往下分析问题,从下往上求解问题

可以使用动态规划的问题一般都有一些特点可以遵循。如题目的问法一般是三种方式:

  1. 求最大值/最小值
  2. 求可不可行
  3. 求方案总数

如果碰到一个问题,是问这三个问题之一的,就有90%概率是使用动态规划来求解。
重点说明的是,如果一个问题是让求出所有的方案和结果,则肯定不是使用动态规划。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值