拓扑排序及练习题

本文介绍了拓扑排序的概念,包括有向无环图的定义,并详细阐述了邻接矩阵和邻接表两种图的存储方式。此外,提供了一个关于寻找最大食物链的练习题,通过实例解释了拓扑排序的应用。最后,给出了拓扑排序的深入讲解文章链接。
摘要由CSDN通过智能技术生成

一、概念简介

在后续题目中会提及这些概念,所以先给出一个简介。

1、拓扑排序

对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。

2、邻接矩阵

逻辑结构分为两部分:V和E集合,其中,V是顶点,E是边。因此,用一个一维数组存放图中所有顶点数据;用一个二维数组存放顶点间关系(边或弧)的数据,这个二维数组称为邻接矩阵。邻接矩阵又分为有向图邻接矩阵和无向图邻接矩阵
在这里插入图片描述

3、邻接表

邻接表,存储方法跟树的孩子链表示法相类似,是一种顺序分配和链式分配相结合的存储结构。如这个表头结点所对应的顶点存在相邻顶点,则把相邻顶点依次存放于表头结点所指向的单向链表中。
对于无向图来说,使用邻接表进行存储也会出现数据冗余,表头结点A所指链表中存在一个指向C的表结点的同时,表头结点C所指链表也会存在一个指向A的表结点。
在这里插入图片描述

二、练习题-最大食物链

题目描述

给你一个食物网,你要求出这个食物网中最大食物链的数量。
(这里的“最大食物链”,指的是生物学意义上的食物链,即最左端是不会捕食其他生物的生产者,最右端是不会被其他生物捕食的消费者。)
Delia 非常急,所以你只有 1 秒的时间。
由于这个结果可能过大,你只需要输出总数模上 80112002 的结果。

输入格式
第一行,两个正整数 n、m表示生物种类 n和吃与被吃的关系数 m。
接下来 m 行,每行两个正整数,表示被吃的生物A和吃A的生物B。

输出格式
一行一个整数,为最大食物链数量模上 80112002 的结果。
输入输出样例
输入

5 7
1 2
1 3
2 3
3 5
2 5
4 5
3 4

输出

5
代码

#include<bits/stdc++.h>
#define MAX_N 5000002
#define MOD 80112002

using namespace std;
struct Node{
   
	int l,r
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

asdfghtyjukilo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值