拓扑排序 经典题

P1807 最长路

//45ms /  3.10MB /  892B C++14 (GCC 9) O2
#include<bits/stdc++.h> 
using namespace std;
queue<int>q;
int n,m;
int maxn[1510],mark[1510],ind[1510];
//maxn:到当前结点之前的最长路 
//mark:标记“在路径上”
//ind:记录每个结点的入度 
struct Edge
{
	int from;
	int to;
	int w;
}edge[50010];
vector<Edge>vec[50010];//vec为Edge型的,在已知起点时可直接通过这个调用出边权和终点 
void topo_sort()//拓扑排序 
{
	for (int i=1;i<=n;i++)
		if (ind[i]==0)
			q.push(i);//先将所有入度为0 的结点放入队列 
	while(q.size())
	{
		int now=q.front();//每次取出队首元素 
		q.pop();
		for(int j=0;j<vec[now].size();j++)//遍历队首元素指向的所有结点 
		{
			ind[vec[now][j].to]--;//去掉当前结点的同时,它指向的所有结点入度减1 
			if(mark[now])//在路径上 
			{
				if(maxn[vec[now][j].to]<maxn[now]+vec[now][j].w)
					maxn[vec[now][j].to]=maxn[now]+vec[now][j].w;
				//如果from之前的最长路加上边权大于之前获得的to之前的最长路,就更新一下 
				mark[vec[now][j].to]=1;//标记终点在路径上 
			}
			if(!ind[vec[now][j].to]) //删边操作之后终点的入度变为0,则将其压入队列 
				q.push(vec[now][j].to);
		}
	}
}

int main()
{
	int i;
	cin>>n>>m;
	for(i=0;i<m;i++)
	{
		scanf("%d%d%d",&edge[i].from,&edge[i].to,&edge[i].w);
		vec[edge[i].from].push_back(edge[i]);
		ind[edge[i].to]++;
	}
	maxn[n]=-1;
	mark[1]=1;//标记起点(1)在路径上 
	topo_sort();
	cout<<maxn[n];
	return 0;
}

 

天梯赛L2- 深入虎穴 (25 分)

著名的王牌间谍 007 需要执行一次任务,获取敌方的机密情报。已知情报藏在一个地下迷宫里,迷宫只有一个入口,里面有很多条通路,每条路通向一扇门。每一扇门背后或者是一个房间,或者又有很多条路,同样是每条路通向一扇门…… 他的手里有一张表格,是其他间谍帮他收集到的情报,他们记下了每扇门的编号,以及这扇门背后的每一条通路所到达的门的编号。007 发现不存在两条路通向同一扇门。

内线告诉他,情报就藏在迷宫的最深处。但是这个迷宫太大了,他需要你的帮助 —— 请编程帮他找出距离入口最远的那扇门。

输入格式:

输入首先在一行中给出正整数 N(<105),是门的数量。最后 N 行,第 i 行(1≤i≤N)按以下格式描述编号为 i 的那扇门背后能通向的门:

K D[1] D[2] ... D[K]

其中 K 是通道的数量,其后是每扇门的编号。

输出格式:

在一行中输出距离入口最远的那扇门的编号。题目保证这样的结果是唯一的。

输入样例:

13
3 2 3 4
2 5 6
1 7
1 8
1 9
0
2 11 10
1 13
0
0
1 12
0
0

输出样例:

12
#include<bits/stdc++.h> 
using namespace std;

int ind[100010],n,start;
vector<int>vec[100010];
queue<int>q;

int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		int k;
		scanf("%d",&k);
		while(k--)
		{
			int x;
			scanf("%d",&x);
			vec[i].push_back(x);
			ind[x]++;
		}
	}
	for(int i=1;i<=n;i++)
	{
		if(ind[i]==0)
		{
			start=i;
			break;
		}
	}
	q.push(start);
	int now;
	while(q.size())
	{
		now=q.front();
		q.pop();
		for(int i=0;i<vec[now].size();i++)
		{
			ind[vec[now][i]]--;
			if(!ind[vec[now][i]])
				q.push(vec[now][i]);
		}
	}
	cout<<now<<endl;
	return 0;
}

 

P1038 [NOIP2003 提高组] 神经网络

/*编程语言
C++14 (GCC 9) O2
代码长度
1005B
用时
16ms
内存
808.00KB*/
#include<bits/stdc++.h> 
using namespace std;
int n,p;
int c[105],u[105],ind[105],outd[105];
struct Edge
{
	int from;
	int to;
	int w;
}edge[10000];
vector<Edge>vec[105];
queue<int>q;

int main()
{
	int i,j;
	cin>>n>>p;
	for(i=1;i<=n;i++)
	{
		scanf("%d%d",&c[i],&u[i]);
		if(c[i])
		{
			q.push(i);
			vis[i]=1;
		}
	}
	for(i=0;i<p;i++)
	{
		scanf("%d%d%d",&edge[i].from,&edge[i].to,&edge[i].w);
		vec[edge[i].from].push_back(edge[i]);
		outd[edge[i].from]++;
		ind[edge[i].to]++;
	}
	while(q.size())
	{
		int now=q.front();
		q.pop();
		for(i=0;i<vec[now].size();i++)
		{
			c[vec[now][i].to]+=c[now]*vec[now][i].w;
			ind[vec[now][i].to]--;
			if(!ind[vec[now][i].to])
			{
				c[vec[now][i].to]-=u[vec[now][i].to];
				if(c[vec[now][i].to]>0)
					q.push(vec[now][i].to);
			}
		}
	}
	int flag=0;
	for(i=1;i<=n;i++)
	{
		if(!outd[i]&&c[i]>0)
		{
			printf("%d %d\n",i,c[i]);
			flag=1;
		}
	}
	if(!flag) cout<<"NULL";
	return 0;
}

P1983 [NOIP2013 普及组] 车站分级

#include<bits/stdc++.h>
using namespace std;
int n,m,ans;
int a[1005],stop[1005],ind[1005],level[1005],mp[1005][1005];
vector<int>vec[1010];
queue<int>q;

/*int dfs(int x)
{
	if(!vec[x].size()) return level[x]=1;
	if(level[x]) return level[x];
	int maxn=0;
	for(int j=0;j<vec[x].size();j++)
	{
		maxn=max(maxn,dfs(vec[x][j])+1);
		level[x]=maxn;
	}
	return maxn;
}*/

void topo_sort()
{
	for(int i=1;i<=n;i++)
	{
		if(!ind[i]) 
		{ 
			q.push(i);
			level[i]=1;
		}//把等级最低的放入队列,记录其等级为1 
	}
	while(q.size())
	{
		
		int now=q.front();
		q.pop();
		for(int j=0;j<vec[now].size();j++)//遍历队首元素指向的所有结点 
		{
			level[vec[now][j]]=max(level[now]+1,level[vec[now][j]]);
			ans=max(ans,level[vec[now][j]]);
			ind[vec[now][j]]--;//去掉当前结点的同时,它指向的所有结点入度减1 
			if(!ind[vec[now][j]]) //删边操作之后终点的入度变为0,则将其压入队列 
				q.push(vec[now][j]);
		}
	}
}

int main()
{
	cin>>n>>m;
	while(m--)
	{
		memset(a,0,sizeof(a));
        memset(stop,0,sizeof(stop));
		int num;
		cin>>num;
		for(int i=1;i<=num;i++)
		{
			scanf("%d",&a[i]);
			stop[a[i]]=1;//标记为停车站点 
		}
		for(int j=a[1];j<a[num];j++)//遍历起点到终点的全部车站 
		{
			if(!stop[j])//不是停车站点 
			{
				for(int i=1;i<=num;i++)//向每一个停车站点连一条有向线 
				{
					if(!mp[j][a[i]])//之前没有连过 
					{
						vec[j].push_back(a[i]);
						ind[a[i]]++;//等级较高的入度加一 
						mp[j][a[i]]=1;//标记连过了 
					}
				} 
			}
		}
	}
	topo_sort();
	/*for(int i=1;i<=n;i++)
	{
		if(!ind[i]) 
			ans=max(ans,dfs(i));
	}*/
	cout<<ans;
	return 0;
}

拓扑排序是对有向无环图进行排序的一种算法,它将图中的所有顶点按照一定的顺序排列,使得任意一条边的起点在排列中出现在终点的前面。这样的排序结果称为拓扑序列。逆拓扑排序则是拓扑排序的反过程,它将图中的所有顶点按照一定的顺序排列,使得任意一条边的终点在排列中出现在起点的前面。 拓扑排序的执行步骤如下: 1. 初始化一个空队列和一个空列表。 2. 找到图中入度为0的顶点,将其添加到队列中。 3. 当队列不为空时,执行以下操作: - 从队列中取出一个顶点,并将其添加到结果列表中。 - 删除该顶点的所有出边,更新与之相邻顶点的入度。 - 如果更新后的入度为0,则将相邻顶点添加到队列中。 4. 如果结果列表中的顶点数等于图中的顶点数,则拓扑排序成功,否则图中存在环。 逆拓扑排序的执行步骤与拓扑排序相反: 1. 初始化一个空队列和一个空列表。 2. 找到图中出度为0的顶点,将其添加到队列中。 3. 当队列不为空时,执行以下操作: - 从队列中取出一个顶点,并将其添加到结果列表中。 - 删除该顶点的所有入边,更新与之相邻顶点的出度。 - 如果更新后的出度为0,则将相邻顶点添加到队列中。 4. 如果结果列表中的顶点数等于图中的顶点数,则逆拓扑排序成功,否则图中存在环。 通过拓扑排序和逆拓扑排序,我们可以得到有向无环图中的一种合理的顶点顺序,这对解决诸如任务调度、依赖关系分析等问非常有用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [【数据结构大拓扑排序与逆拓扑排序](https://blog.csdn.net/weixin_46069678/article/details/130065322)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [拓扑排序与关键路径.pptx](https://download.csdn.net/download/DUXS11/87378777)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

春弦_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值