引言
在网络安全领域,随着攻击手段的日益复杂化,传统的漏洞检测方法已经无法满足需求。因此,开发一个智能化的自动漏洞检测工具至关重要。本文将介绍如何结合人工智能(AI)、CVE(Common Vulnerabilities and Exposures)、CNVD(中国国家漏洞数据库)及GitHub公开的漏洞利用代码,构建名为“HackAi”的自动漏洞检测工具。我们将重点讲解如何检测漏洞、模拟攻击并生成详细的检测报告。
系统架构
HackAi的系统架构如下图所示:
-
**数据源**:
-
CVE/CNVD数据库:提供最新的漏洞信息。
-
GitHub公开漏洞利用代码:用于模型训练和漏洞检测。
-
-
**数据处理层**:
-
数据收集模块:抓取并整合数据。
-
数据清洗与预处理模块:清理和格式化数据。
-
-
**AI模型**:
-
特征提取模块:提取文本特征。
-
模型训练模块:训练机器学习模型。
-
-
**漏洞检测引擎**:
-
漏洞检测模块:自动检测代码中的漏洞。
-
模拟攻击模块:根据检测结果模拟攻击。
-
-
**报告生成模块**:
- 生成检测和攻击报告。
-
**用户界面**:
- Web界面:允许用户输入代码、查看检测结果并下载报告。
数据收集
CVE数据获取
使用Python中的requests
库从CVE获取数据。获取CVE数据的示例代码如下:
import requests
def fetch\_cve\_data():
url = "https://cve.circl.lu/api/last"
response = requests.get(url)
if response.status\_code == 200:
return response.json()
else:
raise Exception("无法获取CVE数据,状态码: {}".format(response.status\_code))
cve\_data = fetch\_cve\_data()
GitHub漏洞利用代码
从GitHub API获取相关漏洞利用代码的存储库:
def fetch\_github\_exploits(query):
url = f"https://api.github.com/search/repositories?q={query}+in:description+language:python"
headers = {'Accept': 'application/vnd.github.v3+json'}
response = requests.get(url, headers=headers)
if response.status\_code == 200:
return response.json()['items']
else:
raise Exception("无法获取GitHub漏洞利用代码,状态码: {}".format(response.status\_code))
exploits = fetch\_github\_exploits("CVE")
数据预处理
抓取的数据需要清洗和预处理,以便于后续模型训练:
import pandas as pd
def preprocess\_data(cve\_data, exploits):
cve\_df = pd.DataFrame(cve\_data)
exploits\_df = pd.DataFrame(exploits)
# 清洗数据
cve\_df.dropna(inplace=True)
exploits\_df.dropna(inplace=True)
# 合并数据集
merged\_df = pd.concat([cve\_df, exploits\_df], ignore\_index=True)
return merged\_df
cleaned\_data = preprocess\_data(cve\_data, exploits)
AI模型训练
特征提取与模型训练
从处理后的数据中提取特征并准备标签。这里采用TF-IDF进行文本特征向量化:
from sklearn.feature\_extraction.text import TfidfVectorizer
from sklearn.model\_selection import train\_test\_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification\_report
def extract\_features(df):
vectorizer = TfidfVectorizer()
X = vectorizer.fit\_transform(df['description'])
return X, vectorizer
X, vectorizer = extract\_features(cleaned\_data)
y = cleaned\_data['label'] # 假设已标记的标签
X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.2, random\_state=42)
model = RandomForestClassifier()
model.fit(X\_train, y\_train)
# 模型评估
y\_pred = model.predict(X\_test)
print(classification\_report(y\_test, y\_pred))
漏洞检测与模拟攻击
漏洞检测引擎
构建漏洞检测引擎,用户输入待检测的代码,系统输出检测结果:
def detect\_vulnerabilities(code\_snippet):
features = vectorizer.transform([code\_snippet]) # 特征提取
prediction = model.predict(features)
return prediction
result = detect\_vulnerabilities("待检测的代码片段")
模拟攻击
根据检测结果,使用已知的漏洞利用代码模拟攻击。以下是执行模拟攻击的示例:
import subprocess
def simulate\_attack(vulnerability):
# 假设我们有一个漏洞利用脚本
exploit\_script = f"./exploits/{vulnerability}.py"
try:
result = subprocess.run(["python", exploit\_script], capture\_output=True, text=True)
return result.stdout
except Exception as e:
return str(e)
# 假设检测到的漏洞是CVE-XXXX-XXXX
attack\_result = simulate\_attack("CVE-XXXX-XXXX")
print("攻击结果:", attack\_result)
报告生成
生成检测报告
将检测结果和模拟攻击的输出整合生成详细的报告:
from datetime import datetime
def generate\_report(code\_snippet, vulnerability\_detected, attack\_result):
report = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"code\_snippet": code\_snippet,
"vulnerability\_detected": vulnerability\_detected,
"attack\_result": attack\_result
}
return report
report = generate\_report("待检测的代码片段", result, attack\_result)
print("检测报告:", report)
报告格式化
将报告格式化为PDF或HTML格式,方便用户下载和查看。使用WeasyPrint
库将报告生成PDF:
from weasyprint import HTML
def save\_report\_as\_pdf(report, filename='report.pdf'):
html\_content = f"""
<h1>检测报告</h1>
<p>时间: {report['timestamp']}</p>
<p>待检测代码: {report['code\_snippet']}</p>
<p>检测到漏洞: {report['vulnerability\_detected']}</p>
<p>攻击结果: {report['attack\_result']}</p>
"""
HTML(string=html\_content).write\_pdf(filename)
save\_report\_as\_pdf(report)
用户界面
使用Flask框架搭建Web界面,允许用户提交代码进行检测,展示结果和下载报告:
Flask应用
from flask import Flask, request, jsonify
app = Flask(\_\_name\_\_)
@app.route('/detect', methods=['POST'])
def detect():
code\_snippet = request.json['code']
result = detect\_vulnerabilities(code\_snippet)
attack\_result = simulate\_attack("CVE-XXXX-XXXX") # 模拟攻击
report = generate\_report(code\_snippet, result, attack\_result)
save\_report\_as\_pdf(report) # 保存报告
return jsonify({
"code": code\_snippet,
"vulnerability\_detected": result,
"attack\_result": attack\_result,
"report\_generated": True
})
if \_\_name\_\_ == '\_\_main\_\_':
app.run(debug=True)
前端页面
创建一个简单的HTML页面,允许用户输入代码并下载报告:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>HackAi漏洞检测</title>
</head>
<body>
<h1>自动漏洞检测工具 HackAi</h1>
<textarea id="code" rows="10" cols="50" placeholder="输入待检测代码"></textarea><br>
<button onclick="submitCode()">检测</button>
<pre id="result"></pre>
<script>
function submitCode() {
const code = document.getElementById('code').value;
fetch('/detect', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({ code }),
})
.then(response => response.json())
.then(data => {
document.getElementById('result').textContent = JSON.stringify(data, null, 2);
});
}
</script>
</body>
</html>
结论
通过构建HackAi,结合AI与黑客技术,我们能够实现自动化漏洞检测与攻击模拟,提高网络安全的防御能力。未来,我们可以进一步优化AI模型,增强系统的检测准确性和攻击模拟的真实性,以更好地应对不断演变的网络安全威胁。