某日上课,高数老师出一道三重积分题,悬赏五毛钱。今日无聊,特此总结。
原题目:
悬赏题:
老师给的图:
自己用python画的图(学艺不精,python只能画到此份上了)
画图模仿了大佬的方法https://blog.csdn.net/weixin_43793874/article/details/94877114
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
x = np.arange(-2, 2, 0.25)
y = np.arange(-2, 2, 0.25)
x, y = np.meshgrid(x, y)
z1 = np.sqrt(4-(x ** 2 + y ** 2))
z2 = (x**2 + y**2)/3
# z = np.sqrt(4-(x ** 2 + y ** 2))-(x**2 + y**2)/3
ax = Axes3D(plt.figure())
plt.rcParams['font.sans-serif'] = ['SimHei'] # 限定字体
plt.rcParams['axes.unicode_minus'] = False # 可取负数
ax.set_title('三重积分曲面')
# 渲染
ax.plot_surface(x, y, z1)
ax.plot_surface(x, y, z2)
# ax.plot_surface(x, y, z)
plt.show()
原题做法:
方法1:利用柱面坐标
1.求出交面在xoy面上的投影
2.根据投影确定ρ,θ的范围
3.上下型,从下往上‘串’得出z的范围
4.算出~做完
方法2:利用截面法(先二后一),f(x,y,z)只与z有关故可利用
1.根据图可知I分为两部分(在这里分为D1(下部分)D2(上部分))–>截出来的面有两种不同的表达式故需分
2.又因为f(x,y,z)只与z有关,所以D1为下部分截面的面积,同理得出D2
3.算出~做完
悬赏题:
1.观察范围发现二者求出的积分值应该相等(因为在范围中x与y互换值不影响结果)
2.观察f(x,y,z)的函数发现均为奇函数
来个推广:
3.可知所求的Ω既关于yoz又关于xoz对称,且f(x,y,z)都为奇函数,所以二者均为零
bingo~问题解决