图像处理
文章平均质量分 83
AI算法-图哥
个人微信: tuge7893,欢迎交流~
展开
-
运动补偿和运动估计总结(MEMC)
运动补偿和运动估计总结转载 2022-09-15 22:30:57 · 5045 阅读 · 0 评论 -
高斯滤波的快速实现方法
1. 介绍二维高斯函数具有旋转对称性,处理后不会对哪一个方向上的边缘进行了过多的滤波,因此相对其他滤波器,具有无法比拟的优越性。但是传统Gauss滤波随着图像尺寸的增加,运算复杂度呈平方上涨,因此需要对其优化改进。下面,分别介绍传统型,分解型和递归迭代型三种实现方法。2. 传统型Gauss滤波首先需要构建一个Gauss滤波核,公式为:Matlab代码实现:dSigma =0.8;fK1=1.0/(2*dSigma*dSigma);fK2=fK1/pi;iSize = 5;step =.原创 2022-01-30 18:22:51 · 1597 阅读 · 0 评论 -
直方图的常见类型
1. 介绍直方图也叫柱状图,它以坐标轴上波形图的形式显示照片的曝光精度,其横轴表示亮度等级,从左侧0(暗色调)到右侧255(亮色调),将照片的亮度等级分为256级,而纵轴则表示每个亮度等级下的像素个数,峰值越高说明该明暗值的像素数量越多,在画面中所占的面积也就越大,将纵轴上这些像数值点连接起来,就形成了连续的直方图波形。通过直方图的横轴和纵轴我们可以理性地判断曝光是否合适,影像的层次是否丰富,是否超出了数码相机的动态范围等等。2. 直方图常见类型2.1 右坡型直方图,照片偏亮请添加图片描述从.原创 2021-11-27 10:09:12 · 8602 阅读 · 0 评论 -
3D LUT图像处理
1. 介绍在我们开始之前,先对必要的背景知识做一些简单的铺垫。LUT 是 Lookup Table 的缩写,在图像处理方面,LUT 可以用来完成类似滤镜的效果,其原理本质上就是一个映射关系,输入颜色 (r, g, b),通过 LUT 去查找,得到一个新的颜色 (R, G, B),则完成了一次映射操作。LUT 又分为 1D LUT 和 3D LUT,1D LUT 是指 R, G, B 三个分量互相不影响,都是独立映射,即存在 3 个映射 f1f_1f1, f2f_2f2, f3f_3f3,有如下关.原创 2021-10-31 17:10:23 · 9249 阅读 · 1 评论 -
图像处理之分块加速运算
1. 介绍图像处理的算法复杂度通常都比较高,计算也相应比较耗时。利用CPU多线程处理能力可以大幅度加快计算速度。但是,为了保证多线程处理的结果和单线程处理的结果完全相同,图像的多线程计算有一些需要特别考虑的地方。基本思路:为了能让多个线程同时并行处理,那么各自处理的数据不能有交集,这很好理解。那么基本思路是将一副图像分成多个子块,每个子块数据肯定是没有交集的,每个线程对一个子块数据进行处理,完成后将所有子块处理结果合成最终图像。首先,每个子块的大小当然是必须考虑的问题。通常当应用进行一个较长时间的操.原创 2021-03-23 23:19:24 · 1261 阅读 · 0 评论 -
图像处理之直方图统计及C++实现
1. 介绍在分析图像、物体和视频信息的时候,我们经常用直方图来表达我们关注的信息。直方图在计算机视觉中应用广泛。例如,通过判断帧与帧之间边缘和颜色的统计量是否出现巨大变化,来检测视频中场景的变换。直方图只是简单地将数据归入预定义的组,并在每个组内进行计数。也可以选择对数据提取特征、再对特征进行计数,这里的特征可以是梯度的长度、梯度的方向、颜色或者其他任何可以反映数据特点的特征,也就是说,直方图是一种用来揭示数据分布的统计特性的工具。直方图的维度通常比原始数据的维度低。OpenCV中使用数组来表示直方.原创 2021-01-30 11:37:49 · 8773 阅读 · 0 评论 -
图像处理之高斯滤波
1. 高斯函数与高斯滤波一维高斯函数我们都熟悉,形式如下:G(x)=12πσexp(−x22σ2)G(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{x^2}{2\sigma^2})G(x)=2πσ1exp(−2σ2x2)计算机视觉中,高斯滤波使用的高斯核为x和y两个一维高斯的乘积,两个维度上的标准差σ通常相同,形式如下:G(x,y)=12πσ2exp(−x2+y22σ2)G(x, y) = \frac{1}{2\pi\sigma^2}\exp(.原创 2021-01-28 23:31:06 · 2891 阅读 · 1 评论 -
图像处理之中值滤波原理及C++实现
1. 中值滤波原理中值滤波算法以某像素的领域图像区域中的像素值的排序为基础,将像素领域内灰度的中值代替该像素的值[1];如:以3*3的领域为例求中值滤波中像素5的值int pixel[9]中存储像素1,像素2…像素9的值;对数组pixel[9]进行排序操作;像素5的值即为数组pixel[9]的中值pixel[4]。中值滤波对处理椒盐噪声非常有效。2. C++代码实现void medianFilter (unsigned char* corrupted, unsigned char* .原创 2020-11-06 22:11:13 · 2104 阅读 · 0 评论 -
图像处理之IOU, NMS原理及C++实现
1. IOU交并比(Intersection-over-Union,IoU),目标检测中使用的一个概念,是产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率,即它们的交集与并集的比值。最理想情况是完全重叠,即比值为1。计算公式:C++代码:struct bbox{ int m_left; int m_top; int m_width; int m_height; bbox() {} bbox(int left, int to原创 2020-10-29 21:11:42 · 1651 阅读 · 0 评论 -
图像处理之卷积模式及C++实现
1. 卷积的三种模式深度学习框架中通常会实现三种不同的卷积模式,分别是 SAME、VALID、FULL。这三种模式的核心区别在于卷积核进行卷积操作的移动区域不同,进而导致输出的尺寸不同。我们以一个例子来看这三种模式的区别,输入图片的尺寸是5x5 ,卷积核尺寸是 3x3 ,stride 取 1。1.1 FULL 模式FULL 模式下卷积核从与输入有一个点的相交的地方就开始卷积。如下图所示,蓝框的位置就是卷积核第一个卷积的地方,灰色部分是为了卷积能够正常进行的 padding(一般填 0)。因此 FUL.原创 2020-10-28 18:29:59 · 1831 阅读 · 1 评论 -
图像处理之直方图均衡化及C++实现
1. 背景直方图均衡化在图像增强方面有着很重要的应用。一些拍摄得到的图片,我们从其直方图可以看出,它的分布是集中于某些灰度区间,这导致人在视觉上感觉这张图的对比度不高。所以,对于这类图像,我们可以通过直方图均衡技术,将图像的灰度分布变得较为均匀,从而使得图像对比度增大,视觉效果更佳。2. 原理直方图均衡化的作用是图像增强。有两个问题比较难懂,一是为什么要选用累积分布函数,二是为什么使用累积分布函数处理后像素值会均匀分布。第一个问题。均衡化过程中,必须要保证两个条件:①像素无论怎么映射,一定要保.原创 2020-10-26 11:26:39 · 5284 阅读 · 2 评论