图像分割
文章平均质量分 84
AI算法-图哥
个人微信: tuge7893,欢迎交流~
展开
-
实时语义分割网络模型-FasterSeg
1. 解决的问题先前的使用NAS搜索出的语义分割模型推理速度还不够快,且搜索空间有限。如果加入了延迟的限制,搜索出的网络容易出现"崩溃"现象:即模型倾向于低延迟但是准确率也会大打折扣。语义分割要求保留细节和丰富的上下文信息。FasterSeg发现了新的、更广泛的搜索空间,集成了多分辨率分支,为了更好地校准高精度和低延迟目标之间的平衡,提出了一种解耦的、细粒度的延迟正则化方法,解决了模型容易"崩溃"的问题。将FasterSeg扩展为一个共同搜索框架,在同一次运行中同时搜索一个教师和一个学生网络。知识蒸馏进.原创 2022-01-14 00:16:42 · 3312 阅读 · 0 评论 -
人像分割之ExtremeC3Net
1. 摘要人像分割任务作为许多任务的一个中间阶段,对实时性要求极高,并且当前缺乏大规模的人像分割数据集,为此论文提出ExtremeC3Net模型和用于进行数据扩充的简单方法。ExtremeC3Net基于改进的C3模块,能够实现精度较高速度极快的人像分割,并且这种极轻量化的分割网络也在其他任务中给了我们应用的启发。论文:https://arxiv.org/abs/1908.03093代码:https://github.com/clovaai/ext_portrait_segmentation2. 改.原创 2021-03-23 23:43:37 · 1107 阅读 · 0 评论