相机参数标定的原理及实现

本文详细介绍了相机标定的原理,包括从世界坐标系到图像坐标系的转换过程,涉及相机内外参数、投影矩阵等内容。标定步骤包括打印模板、拍摄多角度图像、检测特征点、求解参数等。实验结果显示,经过标定后,红米K20后置摄像头的畸变较小。在实际操作中,需要注意屏幕刷新频率不同步和莫尔条纹对结果的影响。
摘要由CSDN通过智能技术生成

一、相机标定原理

1.1原理介绍

摄像机标定(Camera calibration)简单来说是从世界坐标系转换为相机坐标系,再由相机坐标系转换为图像坐标系的过程,也就是求最终的投影矩阵P的过程。
基本坐标系:

  • 世界坐标系(world coordinate system):用户定义的三维世界的坐标系,为了描述目标物在真实世界里的位置而被引入。
  • 相机坐标系(camera coordinate system):在相机上建立的坐标系,为了从相机的角度描述物体位置而定义,作为沟通世界坐标系和图像/像素坐标系的中间一环。
  • 图像坐标系(image coordinate system):为了描述成像过程中物体从相机坐标系到图像坐标系的投影透射关系而引入,方便进一步得到像素坐标系下的坐标。

一般来说,标定的过程分为两个部分:
        第一步是从世界坐标系转为相机坐标系,这一步是三维点到三维点的转换,包括R,t(相机外参,确定了相机在某个三维空间中的位置和朝向)等参数;
        第二部是从相机坐标系转为成像平面坐标系(像素坐标系),这一步是三维点到二维点的转换,包括K(相机内参,是对相机物理特性的近似)等参数;
投影矩阵 : P=K [ R | t ] 是一个3×4矩阵,混合了内参和外参而成。

从世界坐标系到相机坐标系:
在这里插入图片描述相机坐标系转换为图像坐标系:

在这里插入图片描述
在这里插入图片描述根据上述的关系图可以推导出下面的变换公式:
在这里插入图片描述
在这里插入图片描述
像主点的偏移:
在这里插入图片描述可以推出:
在这里插入图片描述内参矩阵K:
在这里插入图片描述
外参矩阵[R丨t]:

表示三个方向的偏转:
在这里插入图片描述总结公式如下:
在这里插入图片描述

1.2 相机标定步骤

1、打印一张模板并贴在一个平面上;
2、从不同角度拍摄若干张模板图像;
3、检测出图像中的特征点;
4、求出摄像机的外参数(单应性矩阵)和内参数(最大似然估计)
5、求出畸变系数;
6、优化求精。

二、代码

import cv2
import numpy as np
import glob

# 设置寻找亚像素角点的参数,采用的停止准则是最大循环次数30和最大误差容限0.001
criteria = (cv2.TERM_CRITERIA_MAX_ITER | cv2.TERM_CRITERIA_EPS, 30, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>