JAVA数据结构与算法:二叉树、满二叉树、完全二叉树、前中后序遍历、顺序存储二叉树、线索化二叉树、代码实现

为什么要引入树?

  • 数组存储方式:由于数组访问元素速度快,开可以使用二分查找提高速度,但是在按一定顺序插入新元素时,当数组满了再插入新元素时,效率低速度慢。
  • 链式存储方式:链式存储插入很方便,删除效率也高。但是在检索时,效率也比较低,每次都需要从头遍历到尾。
  • 树结构存储方式:能提高数据存储,读取效率。既可以保证检索速度,也可以保证数据的插入、删除、修改的速度。

二叉树

1、概念

1)二叉树

  • 每个节点最多只能有两个子节点的一种形式称为二叉树
  • 二叉树的子节点分为左节点和右节点

2)满二叉树、完全二叉树

**满二叉树:**所有叶子节点都在最后一层,并且总节点数为2n-1(n为层数)
在这里插入图片描述

**完全二叉树:**叶子节点在最后一层和倒数第二层,并且最后一层的叶子节点在左边连续,倒数第二层叶子节点在右边连续
在这里插入图片描述

3)前序遍历、中序遍历、后序遍历

前序遍历:先输出父节点、再输出左子树、右子树

中序遍历:先遍历左子树、再遍历父节点、再遍历右子树

后序遍历:先遍历左子树、再遍历右子树、再遍历父节点

tips:遍历的顺序根据父节点的顺序而定

2、前中后序遍历

代码实现

public class BinaryTreeDemo {

    public static void main(String[] args) {
        // 创建节点
        EmpNode node1 = new EmpNode(1,"heroc");
        EmpNode node2 = new EmpNode(2,"lucy");
        EmpNode node3 = new EmpNode(3,"smith");
        EmpNode node4 = new EmpNode(4,"tom");
        EmpNode node5 = new EmpNode(5,"jack");

        // 创建树
        node1.setLeft(node2);
        node2.setLeft(node3);
        node1.setRight(node4);
        node4.setLeft(node5);

        // 确定根节点,遍历树
        BinaryTree rootNode = new BinaryTree(node1);
//        System.out.println("前序:");
//        rootNode.perOrder();
//        System.out.println("中序:");
//        rootNode.centerOrder();
//        System.out.println("后序:");
//        rootNode.afterOrder();

        // 前序遍历查询
        EmpNode empNode = rootNode.perOrderFind(5);
        if (empNode!=null){
            System.out.println(empNode.toString());
        }

        // 中序遍历查询
        empNode = rootNode.perOrderFind(2);
        if (empNode!=null){
            System.out.println(empNode.toString());
        }

        // 后序遍历查询
        empNode = rootNode.afterOrderFind(4);
        if (empNode!=null){
            System.out.println(empNode.toString());
        }
    }
}

// 创建节点
class EmpNode{
    private int id;
    private String name;
    private EmpNode left;
    private EmpNode right;

    public EmpNode(int id, String name) {
        this.id = id;
        this.name = name;
    }

    public int getId() {
        return id;
    }

    public void setId(int id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public EmpNode getLeft() {
        return left;
    }

    public void setLeft(EmpNode left) {
        this.left = left;
    }

    public EmpNode getRight() {
        return right;
    }

    public void setRight(EmpNode right) {
        this.right = right;
    }

    @Override
    public String toString() {
        return "EmpNode{" +
                "id=" + id +
                ", name='" + name + '\'' +
                '}';
    }

    // 前序遍历
    public void perOrder(){
        System.out.println(this.toString());
        if (this.left!=null){
            this.left.perOrder();
        }
        if (this.right!=null){
            this.right.perOrder();
        }
    }

    // 中序遍历
    public void centerOrder(){
        if (this.left!=null){
            this.left.centerOrder();
        }
        System.out.println(this.toString());
        if (this.right!=null){
            this.right.centerOrder();
        }
    }

    // 后续遍历
    public void afterOrder(){
        if (this.left!=null){
            this.left.afterOrder();
        }
        if (this.right!=null){
            this.right.afterOrder();
        }
        System.out.println(this.toString());
    }

    // 前序遍历查询
    public EmpNode perOrderFind(int id){
        if (this.id == id){
            return this;
        }

        EmpNode empNode = null;
        if (this.left!=null){
            empNode = this.left.perOrderFind(id);
        }
        if (empNode!=null){
            return empNode;
        }

        if (this.right!=null){
            empNode = this.right.perOrderFind(id);
        }
        if (empNode!=null){
            return empNode;
        }

        return null;
    }

    // 中序遍历查询
    public EmpNode centerOrderFind(int id){
        EmpNode empNode = null;
        // 向左查找
        if (this.left!=null){
            empNode = this.left.centerOrderFind(id);
        }
        if (empNode!=null){ // 如果empNode不等null,说明找到了,就返回结果
            return empNode;
        }

        // 当前节点
        if (this.id == id){
            return this;
        }

        // 向右查找
        if (this.right != null){
            empNode = this.right.centerOrderFind(id);
        }
        if (empNode!=null){
            return empNode;
        }

        // 都没找到返回null
        return empNode;
    }

    // 后序遍历查询
    public EmpNode afterOrderFind(int id){
        EmpNode empNode = null;
        // 向左查找
        if (this.left!=null){
            empNode = this.left.centerOrderFind(id);
        }
        if (empNode!=null){ // 如果empNode不等null,说明找到了,就返回结果
            return empNode;
        }

        // 向右查找
        if (this.right != null){
            empNode = this.right.centerOrderFind(id);
        }
        if (empNode!=null){
            return empNode;
        }

        // 当前节点
        if (this.id == id){
            return this;
        }

        return empNode;
    }

}

// 创建根节点
class BinaryTree{
    private EmpNode root;

    public BinaryTree(EmpNode root) {
        this.root = root;
    }

    public void perOrder(){
        if (root!=null){
            root.perOrder();
        }else {
            System.out.println("树为空");
        }
    }
    public void centerOrder(){
        if (root!=null){
            root.centerOrder();
        }else {
            System.out.println("树为空");
        }
    }
    public void afterOrder(){
        if (root!=null){
            root.afterOrder();
        }else {
            System.out.println("树为空");
        }
    }
    public EmpNode perOrderFind(int id){
        if (root!=null){
            return root.perOrderFind(id);
        }else {
            System.out.println("树为空");
            return null;
        }
    }
    public EmpNode centerOrderFind(int id){
        if (root!=null){
            return root.centerOrderFind(id);
        }else {
            System.out.println("树为空");
            return null;
        }
    }
    public EmpNode afterOrderFind(int id){
        if (root!=null){
            return root.afterOrderFind(id);
        }else {
            System.out.println("树为空");
            return null;
        }
    }
}

3、顺序存储二叉树

顺序存储二叉树,是将二叉树顺序存储到数组中,并在遍历数组的时候依旧按照前序遍历、中序遍历、后序遍历。

在这里插入图片描述

顺序存储二叉树的特点:

  • 顺序二叉树通常只考虑完全二叉树
  • 从0开始,第n个元素的左子节点为第2*n+1个元素
  • 从0开始,第n个元素的右子节点为第2*n+2个元素
  • 从0开始,第n个元素的父节点为第**(n-1)/2**个元素

从0开始计算,为了与数组索引保持一致。

代码实现

public class ArrayBinaryTreeDemo {
    public static void main(String[] args) {
        int arr[] = {1,2,3,4,5,6,7}; // 这是一个二叉树从根节点依次顺序存储的数组
        ArrayBinaryTree arrayBinaryTree = new ArrayBinaryTree(arr);
        System.out.println("前序遍历:");
        arrayBinaryTree.perOrder();
        System.out.println("\n中序遍历:");
        arrayBinaryTree.infixOrder();
        System.out.println("\n后序遍历:");
        arrayBinaryTree.suffixOrder();
    }
}

class ArrayBinaryTree{
    int arr[];

    public ArrayBinaryTree(int[] arr) {
        this.arr = arr;
    }

    // 前序遍历顺序存储的二叉树数组
    public void perOrder(){
        perOrder(0);
    }
    public void perOrder(int index){
        System.out.print(arr[index]+" ");

        if ((2*index+1) < arr.length){
            perOrder(2*index+1);
        }

        if ((2*index+2) < arr.length){
            perOrder(2*index+2);
        }
    }

    // 中序遍历顺序存储的二叉树数组
    public void infixOrder(){
        infixOrder(0);
    }
    public void infixOrder(int index){
        if ((2*index+1) < arr.length){
            infixOrder(2*index+1);
        }

        System.out.print(arr[index]+" ");

        if ((2*index+2) < arr.length){
            infixOrder(2*index+2);
        }
    }

    // 后序遍历顺序存储的二叉树数组
    public void suffixOrder(){
        suffixOrder(0);
    }
    public void suffixOrder(int index){
        if ((2*index+1) < arr.length){
            suffixOrder(2*index+1);
        }

        if ((2*index+2) < arr.length){
            suffixOrder(2*index+2);
        }

        System.out.print(arr[index]+" ");
    }
}

3、线索化二叉树

由于树在最后的叶子节点都有左右指针是空的,即总共有n个节点的二叉链表中含有n+1个空指针域。利用空指针域存放指向当前节点在某种遍历下的前驱或后继节点。这种附加的指针指向的操作就是线索。

根据线索的不同,线索二叉树又可分为前序线索二叉树中序线索二叉树后序线索二叉树

一个节点的前一个节点,称为前驱节点

一个节点的后一个节点,称为后继节点

在这里插入图片描述

中序线索二叉树遍历顺序,infixThreadList()实现:
在这里插入图片描述

public class ThreadBinaryTreeDemo {
    public static void main(String[] args) {
        Node node1 = new Node(1);
        Node node2 = new Node(3);
        Node node3 = new Node(6);
        Node node4 = new Node(8);
        Node node5 = new Node(10);
        Node node6 = new Node(14);

        node1.setLeft(node2);
        node1.setRight(node3);
        node2.setLeft(node4);
        node2.setRight(node5);
        node3.setLeft(node6);

        ThreadBinaryTree threadBinaryTree = new ThreadBinaryTree(node1);
//        threadBinaryTree.perThread(); // 前序线索化二叉树
//        threadBinaryTree.perOrder(); // 通过前序遍历

        threadBinaryTree.infixThread(); // 中序线索化二叉树
//        threadBinaryTree.infixOrder(); // 通过中序遍历
        threadBinaryTree.infixThreadList();
        System.out.println("id为8节点的后继节点为:"+node4.getRight());
        System.out.println("id为10节点的前驱节点为:"+node5.getLeft());
        System.out.println("id为10节点的后继节点为:"+node5.getRight());
        System.out.println("id为14节点的前驱节点为:"+node6.getLeft());
        System.out.println("id为14节点的后继节点为:"+node6.getRight());

    }
}

class Node{
    private int id;
    private Node left;
    private Node right;
    // 设置左右节点的类型,0为左节点或右节点,1为前驱节点或后继节点
    private int leftType;
    private int rightType;

    public Node(int id) {
        this.id = id;
    }

    public int getId() {
        return id;
    }

    public void setId(int id) {
        this.id = id;
    }

    public Node getLeft() {
        return left;
    }

    public void setLeft(Node left) {
        this.left = left;
    }

    public Node getRight() {
        return right;
    }

    public void setRight(Node right) {
        this.right = right;
    }

    public int getLeftType() {
        return leftType;
    }

    public void setLeftType(int leftType) {
        this.leftType = leftType;
    }

    public int getRightType() {
        return rightType;
    }

    public void setRightType(int rightType) {
        this.rightType = rightType;
    }

    @Override
    public String toString() {
        return "Node{" +
                "id=" + id +
                ", leftType=" + leftType +
                ", rightType=" + rightType +
                '}';
    }

    // 前序遍历:只遍历左子节点和右子节点,不遍历前驱节点和后继节点
    public void perOrder(){
        System.out.println(this.toString());

        if (this.left!=null && this.getLeftType()==0){
            this.left.perOrder();
        }

        if (this.right!=null && this.getRightType()==0){
            this.right.perOrder();
        }
    }

    // 中序遍历:只遍历左子节点和右子节点,不遍历前驱节点和后继节点
    public void infixOrder(){
        if (this.left!=null && this.leftType == 0){
            this.left.infixOrder();
        }

        System.out.println(this.toString());

        if (this.right!=null && this.rightType == 0){
            this.right.infixOrder();
        }
    }

    // 后序遍历:只遍历左子节点和右子节点,不遍历前驱节点和后继节点
    public void suffixOrder(){
        if (this.left!=null && this.leftType == 0){
            this.left.suffixOrder();
        }
        if (this.right!=null && this.rightType == 0){
            this.right.suffixOrder();
        }
        System.out.println(this.toString());
    }
}

class ThreadBinaryTree{
    private Node root;
    // 用于记录前驱节点,每要遍历下一个节点时,
    // 就需要将当前节点记录下来,作为下一个节点的前驱节点
    // 如果前驱节点的右子节点为空,那么就可以设置前驱节点的后继节点
    // 后继节点也就是当前节点
    private Node pre;

    public ThreadBinaryTree(Node node) {
        this.root = node;
    }

    // 创建一个前序索引
    public void perThread(){
        perThread(root);
    }
    public void perThread(Node node){
        if (node == null){
            return;
        }

        // 处理当前节点
        // 先处理左节点,如果左子节点为空,那么就将上一个节点设置为左节点的前驱节点,
        // 这里不判断pre是否为空,是没有关系的,如果pre为空,说明该节点是线索化的第一个节点
        // 有利于根据线索指针进行遍历
        if (node.getLeft() == null){
            node.setLeft(pre);
            node.setLeftType(1);
        }
        // 由于后继节点需要遍历到下一个节点才能确定,所以,遍历到下一个节点时
        // 才能设置前驱节点的右子节点指向当前的node
        if (pre!=null && pre.getRight() == null){
            pre.setRight(node);
            pre.setRightType(1);
        }
        // 用于记录前驱节点,每要遍历下一个节点时,
        // 就需要将当前节点记录下来,作为下一个节点的前驱节点
        pre = node;

        // 获取左节点,一定要判断是否是原节点,否则会陷入死循环
        if (node.getLeftType()==0){
            perThread(node.getLeft());
        }

        // 获取右节点,一定要判断是否是原节点,否则会陷入死循环
        if (node.getRightType()==0){
            perThread(node.getRight());
        }
    }

    // 创建一个中序序列化二叉树
    public void infixThread(){
        infixThread(root);
    }
    public void infixThread(Node node){
        if (node==null){
            return;
        }

        if (node.getLeftType() == 0){
            infixThread(node.getLeft());
        }

        if (node.getLeft() == null){
            node.setLeft(pre);
            node.setLeftType(1);
        }
        if (pre!=null && pre.getRight() == null){
            pre.setRight(node);
            pre.setRightType(1);
        }
        pre = node;

        if (node.getRightType()==0){
            infixThread(node.getRight());
        }
    }

    // 创建一个后序线索化
    public void suffixThread(){
        
    }
    
    // 根据线索指针进行前序线索二叉树遍历
    public void perThreadList(){
        Node node = root;
        while (node!=null){
            while (node.getLeftType() == 0){
                System.out.println(node.toString());
                node = node.getLeft();
            }
            System.out.println(node.toString());
            while (node.getRightType()==1){
                node = node.getRight();
                System.out.println(node.toString());
            }
            node = node.getRight();
        }
    }

    // 根据线索指针进行中序线索二叉树遍历
    public void infixThreadList(){
        // 定义一个变量,存储当前节点
        Node node = root;
        while (node != null){
            // 第一次是要找到左节点为空,并且左节点类型为1,也就是中序线索化的二叉树第一个节点
            while (node.getLeftType() == 0){
                node = node.getLeft();
            }
            // 找到了就输出
            System.out.println(node.toString());

            while (node.getRightType() == 1){
                node = node.getRight();
                System.out.println(node.toString());
            }
            node = node.getRight();
        }
    }

    // 根据线索指针进行后序线索二叉树遍历
    public void suffixThreadList(){

    }

    // 前序遍历形式遍历线索二叉树
    public void perOrder(){
        if (root!=null){
            root.perOrder();
        }else {
            System.out.println("二叉树为空");
        }
    }

    // 中序遍历形式遍历线索二叉树
    public void infixOrder(){
        if (root!=null){
            root.infixOrder();
        }else {
            System.out.println("二叉树为空");
        }
    }

    // 后序遍历形式遍历线索二叉树
    public void suffixOrder(){
        if (root!=null){
            root.suffixOrder();
        }else {
            System.out.println("二叉树为空");
        }
    }
}

结果:

Node{id=8, leftType=0, rightType=1}
Node{id=3, leftType=0, rightType=0}
Node{id=10, leftType=1, rightType=1}
Node{id=1, leftType=0, rightType=0}
Node{id=14, leftType=1, rightType=1}
Node{id=6, leftType=0, rightType=0}
id为8节点的后继节点为:Node{id=3, leftType=0, rightType=0}
id为10节点的前驱节点为:Node{id=3, leftType=0, rightType=0}
id为10节点的后继节点为:Node{id=1, leftType=0, rightType=0}
id为14节点的前驱节点为:Node{id=1, leftType=0, rightType=0}
id为14节点的后继节点为:Node{id=6, leftType=0, rightType=0}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值