x 和 y 的最小公倍数 = (x * y )/ gcd(x,y) (gcd为最大公约数)
有题目条件推导可知,只需要在2k范围内【k+1,2k】枚举就可以
然后用 1/k 减去 1/y ,判断得到的数(最简分数时)分子是否为1即可
(也就是得到的数 分母可以整除分子)。
代码:
#include <iostream>
#include <algorithm>
#include <cstring>
typedef long long ll;
using namespace std;
int gcd(int a,int b){ //最大公约数
return b==0?a:gcd(b,a%b);
}
struct node{ //存答案的结构体
int x,y;
}ans[20050];
int main()
{
int n;
while(cin>>n)
{
int cnt=0;
for(int i=n+1;i<=2*n;i++) //k+1 - 2k范围内
{
int b=(n*i)/gcd(n,i); //最小公倍数
if(b%(b/n-b/i)==0) //得到的数 分母取余分子
{
ans[cnt].x=b/(b/n-b/i);
ans[cnt++].y=i;
}
}
cout<<cnt<<endl;
for(int i=0;i<cnt;i++) //按格式输出
{
printf("1/%d = 1/%d + 1/%d\n",n,ans[i].x,ans[i].y);
}
}
return 0;
}