【 UVA - 10976 】Fractions Again?! 分数拆分 (最小公倍数)

题目传送


x 和 y 的最小公倍数 = (x * y )/ gcd(x,y) (gcd为最大公约数)

有题目条件推导可知,只需要在2k范围内【k+1,2k】枚举就可以

然后用 1/k 减去 1/y ,判断得到的数(最简分数时)分子是否为1即可
(也就是得到的数 分母可以整除分子)。


代码:

#include <iostream>
#include <algorithm>
#include <cstring>
typedef long long ll;
using namespace std;
int gcd(int a,int b){ //最大公约数
	return b==0?a:gcd(b,a%b);
}

struct node{ //存答案的结构体
	int x,y;
}ans[20050]; 

int main() 
{
    int n;
    while(cin>>n)
    {
    	int cnt=0;
    	for(int i=n+1;i<=2*n;i++) //k+1 - 2k范围内
    	{
    		int b=(n*i)/gcd(n,i);  //最小公倍数
    		if(b%(b/n-b/i)==0)  //得到的数 分母取余分子
    		{
    			ans[cnt].x=b/(b/n-b/i);
    			ans[cnt++].y=i;
			}
		}
		cout<<cnt<<endl;
		for(int i=0;i<cnt;i++) //按格式输出
		{
			printf("1/%d = 1/%d + 1/%d\n",n,ans[i].x,ans[i].y);
		}
		
	}
	return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>