在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物
提示:
0 < grid.length <= 200
0 < grid[0].length <= 200
代码:
状态转移方程: 上边的val和左边的val 取较大值 + 自身
dp[i][j]=max(dp[i-1][j],dp[i][j-1])+grid[i][j];
class Solution {
public:
int maxValue(vector<vector<int>>& grid) {
int dp[220][220]={grid[0][0]},len1=grid.size(),len2=grid[0].size();
for(int i=1;i<len1;i++) //边界:第一列
dp[i][0]=dp[i-1][0]+grid[i][0];
for(int i=1;i<len2;i++) //边界:第一行
dp[0][i]=dp[0][i-1]+grid[0][i];
for(int i=1;i<len1;i++)
for(int j=1;j<len2;j++)
dp[i][j]=max(dp[i-1][j],dp[i][j-1])+grid[i][j];
return dp[len1-1][len2-1]; //右下角的dp
}
};
代码(滚动数组):
class Solution {
public:
int maxValue(vector<vector<int>>& grid) {
int dp[220]={grid[0][0]},len1=grid.size(),len2=grid[0].size();
for(int i=1;i<len2;i++) //第一行
dp[i]=dp[i-1]+grid[0][i];
for(int i=1;i<len1;i++)
{
dp[0]=dp[0]+grid[i][0]; //每行第一个特殊处理:上边+自身
for(int j=1;j<len2;j++)
dp[j]=max(dp[j],dp[j-1])+grid[i][j];
}
return dp[len2-1]; //返回右下角dp
}
};