HBase集成Hive
1. HBase与Hive的对比
Hive
数据仓库——Hive 的本质其实就相当于将 HDFS 中已经存储的文件在 Mysql 中做了一个双射关系,以方便使用 HQL 去管理查询。用于数据分析、清洗——Hive 适用于离线的数据分析和清洗,延迟较高。基于 HDFS、MapReduce——Hive 存储的数据依旧在 DataNode 上,编写的 HQL 语句终将是转换为 MapReduce 代码执行。
HBase
数据库——是一种面向列族存储的非关系型数据库。用于存储结构化和非结构化的数据——适用于单表非关系型数据的存储,不适合做关联查询,类似 JOIN 等操作。基于 HDFS——数据持久化存储的体现形式是 HFile,存放于 DataNode 中,被ResionServer 以 region 的形式进行管理。延迟较低,接入在线业务使用——面对大量的企业数据,HBase 可以直线单表大量数据的存储,同时提供了高效的数据访问速度。
2. HBase与Hive集成使用
- 提示:HBase 与 Hive 的集成在最新的两个版本中无法兼容。所以,我们只能重新编译:hive-hbase-handler-1.2.2.jar
- 因为我们后续可能会在操作 Hive 的同时对 HBase 也会产生影响,所以 Hive 需要持有操作HBase的 Jar,那么接下来拷贝 Hive 所依赖的 Jar 包(或者使用软连接的形式)。
#需要先配好/etc/profile
export HBASE_HOME=/opt/module/hbase
export HIVE_HOME=/opt/module/hive
ln -s $HBASE_HOME/lib/hbase-common-1.3.1.jar $HIVE_HOME/lib/hbase-common-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-server-1.3.1.jar $HIVE_HOME/lib/hbase-server-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-client-1.3.1.jar $HIVE_HOME/lib/hbase-client-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-protocol-1.3.1.jar $HIVE_HOME/lib/hbase-protocol-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-it-1.3.1.jar $HIVE_HOME/lib/hbase-it-1.3.1.jar
ln -s $HBASE_HOME/lib/htrace-core-3.1.0-incubating.jar $HIVE_HOME/lib/htrace-core-3.1.0-incubating.jar
ln -s $HBASE_HOME/lib/hbase-hadoop2-compat-1.3.1.jar $HIVE_HOME/lib/hbase-hadoop2-compat-1.3.1.jar
ln -s $HBASE_HOME/lib/hbase-hadoop-compat-1.3.1.jar $HIVE_HOME/lib/hbase-hadoop-compat-1.3.1.jar
同时在 hive-site.xml 中修改 zookeeper 的属性,如下:
<property>
<name>hive.zookeeper.quorum</name>
<value>hadoop,hadoop101,hadoop102</value>
<description>The list of ZooKeeper servers to talk to. This is
only needed for read/write locks.</description>
</property>
<property>
<name>hive.zookeeper.client.port</name>
<value>2181</value>
<description>The port of ZooKeeper servers to talk to. This is
only needed for read/write locks.</description>
</property>
2.1 案例一
建立Hive表,关联HBase 表,插入数据到 Hive 表的同时能够影响 HBase 表。分步实现:
#在 Hive 中创建表同时关联 HBase
CREATE TABLE hive_hbase_emp_table(
empno int,
ename string,
job string,
mgr int,
hiredate string,
sal double,
comm double,
deptno int)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" =":key,info:ename,info:job,info:mgr,info:hiredate,info:sal,info:comm,info:deptno")
TBLPROPERTIES ("hbase.table.name" = "hbase_emp_table");
#提示:完成之后,可以分别进入 Hive 和 HBase 查看,都生成了对应的表
#2、在 Hive 中创建临时中间表,用于 load 文件中的数据
#提示:不能将数据直接 load 进 Hive 所关联 HBase 的那张表中
CREATE TABLE emp(
empno int,
ename string,
job string,
mgr int,
hiredate string,
sal double,
comm double,
deptno int)
row format delimited fields terminated by '\t';
#3、向 Hive 中间表中 load 数据
load data local inpath '/opt/software/data/emp.txt' into table emp;
#4、通过 insert 命令将中间表中的数据导入到 Hive 关联 Hbase 的那张表中
insert into table hive_hbase_emp_table select * from emp;
#5、查看 Hive 以及关联的 HBase 表中是否已经成功的同步插入了数据
hive> select * from hive_hbase_emp_table;
Hbase> scan 'hbase_emp_table'
2.2 案例二
目标:在 HBase 中已经存储了某一张表 hbase_emp_table,然后在 Hive 中创建一个外部表来关联 HBase 中的 hbase_emp_table 这张表,使之可以借助 Hive 来分析 HBase 这张表中的数据。
注:该案例 2 紧跟案例 1 的脚步,所以完成此案例前,请先完成案例 1。
分步实现:
#1、在 Hive 中创建外部表
CREATE EXTERNAL TABLE relevance_hbase_emp(
empno int,
ename string,
job string,
mgr int,
hiredate string,
sal double,
comm double,
deptno int)
STORED BY
'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping"=":key,info:ename,info:job,info:mgr,info:hiredate,info:sal,info:comm,info:deptno")
TBLPROPERTIES ("hbase.table.name" = "hbase_emp_table");
#2、关联后就可以使用 Hive 函数进行一些分析操作了
hive (default)> select * from relevance_hbase_emp;
611

被折叠的 条评论
为什么被折叠?



