cs231n assignment(一) 两层神经网络

cs231n assignment(一) 两层神经网络

这是我自己对所学内容的总结与思考,如有错误,欢迎大家指正,若有侵权,烦请告知

一、预备知识
神经网络这一部分的关键在于学会其反向传播,正确推导任意复杂函数的导数;当函数比较简单时,我们可以直接给出其导数,但在后续学习或实践中,会遇到各种各样复杂的函数,这时,如果仍然按照以前的方法推算,会使公式变得非常复杂且极易出错。通过这一节对神经网络反向传播的学习,我们可以将任意给出的复杂函数分解为最基本的代数运算,再利用链式法则来推导其导数,下面给出本实验中各导数的推导过程(可能书写不规范)在这里插入图片描述
二、实验代码
在这里插入图片描述
在这里插入图片描述

from __future__ import print_function

from builtins import range
from builtins import object
import numpy as np
import matplotlib.pyplot as plt
from past.builtins import xrange

class TwoLayerNet(object):
    """
    A two-layer fully-connected neural network. The net has an input dimension of
    N, a hidden layer dimension of H, and performs classification over C classes.
    We train the network with a softmax loss function and L2 regularization on the
    weight matrices. The network uses a ReLU nonlinearity after the first fully
    connected layer.

    In other words, the network has the following architecture:

    input - fully connected layer - ReLU - fully connected layer - softmax

    The outputs of the second fully-connected layer are the scores for each class.
    """

    def __init__(self, input_size, hidden_size, output_size, std=1e-4):
        """
        Initialize the model. Weights are initialized to small random values and
        biases are initialized to zero. Weights and biases are stored in the
        variable self.params, which is a dictionary with the following keys:

        W1: First layer weights; has shape (D, H)
        b1: First layer biases; has shape (H,)
        W2: Second layer weights; has shape (H, C)
        b2: Second layer biases; has shape (C,)

        Inputs:
        - input_size: The dimension D of the input data.
        - hidden_size: The number of neurons H in the hidden layer.
        - output_size: The number of classes C.
        """
        self.params = {}
        self.params['W1'] = std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = std * np.random.randn(hidden_size, output_size)
        self.params['b2'] = np.zeros(output_size)

    def loss(self, X, y=None, reg=0.0):
        """
        Compute the loss and gradients for a two layer fully connected neural
        network.

        Inputs:
        - X: Input data of shape (N, D). Each X[i] is a training sample.
        - y: Vector of training labels. y[i] is the label for X[i], and each y[i] is
          an integer in the range 0 <= y[i] < C. This parameter is optional; if it
          is not passed then we only return scores, and if it is passed then we
          instead return the loss and gradients.
        - reg: Regularization strength.

        Returns:
        If y is None, return a matrix scores of shape (N, C) where scores[i, c] is
        the score for class c on input X[i].

        If y is not None, instead return a tuple of:
        - loss: Loss (data loss and regularization loss) for this batch of training
          samples.
        - grads: Dictionary mapping parameter names to gradients of those parameters
          with respect to the loss function; has the same keys as self.params.
        """
        # Unpack variables from the params dictionary
        W1, b1 = self.params['W1'], self.params['b1']
        W2, b2 = self.params['W2'], self.params['b2']
        N, D = X.shape

        # Compute the forward pass
        scores = None
        #############################################################################
        # TODO: Perform the forward pass, computing the class scores for the input. #
        # Store the result in the scores variable, which should be an array of      #
        # shape (N, C).                                                             #
        #############################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        h_output = np.maximum(0,X.dot(W1)+b1)
        scores = h_output.dot(W2)+b2
        #pass

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        # If the targets are not given then jump out, we're done
        if y is None:
            return scores

        # Compute the loss
        loss = None
        #############################################################################
        # TODO: Finish the forward pass, and compute the loss. This should include  #
        # both the data loss and L2 regularization for W1 and W2. Store the result  #
        # in the variable loss, which should be a scalar. Use the Softmax           #
        # classifier loss.                                                          #
        #############################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        shift_scores = scores - np.max(scores,axis=1).reshape((-1,1))
        softmax_output = np.exp(shift_scores)/np.sum(np.exp(shift_scores),axis=1).reshape(-1,1)
        loss = -np.sum(np.log(softmax_output[range(N),list(y)]))
        loss/=N
        loss+=0.5*reg*(np.sum(W1*W1)+np.sum(W2*W2))

        #pass

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        # Backward pass: compute gradients
        grads = {}
        #############################################################################
        # TODO: Compute the backward pass, computing the derivatives of the weights #
        # and biases. Store the results in the grads dictionary. For example,       #
        # grads['W1'] should store the gradient on W1, and be a matrix of same size #
        #############################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        dscores = softmax_output.copy()
        dscores[range(N),list(y)]-=1
        dscores/=N
        grads['W2'] = h_output.T.dot(dscores)+reg*W2
        grads['b2'] = np.sum(dscores,axis=0)

        dh = dscores.dot(W2.T)
        dh_ReLu = (h_output>0)*dh
        grads['W1'] = X.T.dot(dh_ReLu) + reg*W1
        grads['b1'] = np.sum(dh_ReLu,axis = 0)
        #pass

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        return loss, grads

    def train(self, X, y, X_val, y_val,
              learning_rate=1e-3, learning_rate_decay=0.95,
              reg=5e-6, num_iters=100,
              batch_size=200, verbose=False):
        """
        Train this neural network using stochastic gradient descent.

        Inputs:
        - X: A numpy array of shape (N, D) giving training data.
        - y: A numpy array f shape (N,) giving training labels; y[i] = c means that
          X[i] has label c, where 0 <= c < C.
        - X_val: A numpy array of shape (N_val, D) giving validation data.
        - y_val: A numpy array of shape (N_val,) giving validation labels.
        - learning_rate: Scalar giving learning rate for optimization.
        - learning_rate_decay: Scalar giving factor used to decay the learning rate
          after each epoch.
        - reg: Scalar giving regularization strength.
        - num_iters: Number of steps to take when optimizing.
        - batch_size: Number of training examples to use per step.
        - verbose: boolean; if true print progress during optimization.
        """
        num_train = X.shape[0]
        iterations_per_epoch = max(num_train / batch_size, 1)

        # Use SGD to optimize the parameters in self.model
        loss_history = []
        train_acc_history = []
        val_acc_history = []

        for it in range(num_iters):
            X_batch = None
            y_batch = None

            #########################################################################
            # TODO: Create a random minibatch of training data and labels, storing  #
            # them in X_batch and y_batch respectively.                             #
            #########################################################################
            # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
            idx = np.random.choice(num_train,batch_size,replace =True)
            X_batch = X[idx]
            y_batch = y[idx]
           # pass

            # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

            # Compute loss and gradients using the current minibatch
            loss, grads = self.loss(X_batch, y=y_batch, reg=reg)
            loss_history.append(loss)

            #########################################################################
            # TODO: Use the gradients in the grads dictionary to update the         #
            # parameters of the network (stored in the dictionary self.params)      #
            # using stochastic gradient descent. You'll need to use the gradients   #
            # stored in the grads dictionary defined above.                         #
            #########################################################################
            # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
            self.params['W2']+= -learning_rate*grads['W2']
            self.params['b2'] += -learning_rate * grads['b2']
            self.params['W1'] += -learning_rate * grads['W1']
            self.params['b1'] += -learning_rate * grads['b1']
            #pass

            # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

            if verbose and it % 100 == 0:
                print('iteration %d / %d: loss %f' % (it, num_iters, loss))

            # Every epoch, check train and val accuracy and decay learning rate.
            if it % iterations_per_epoch == 0:
                # Check accuracy
                train_acc = (self.predict(X_batch) == y_batch).mean()
                val_acc = (self.predict(X_val) == y_val).mean()
                train_acc_history.append(train_acc)
                val_acc_history.append(val_acc)

                # Decay learning rate
                learning_rate *= learning_rate_decay

        return {
          'loss_history': loss_history,
          'train_acc_history': train_acc_history,
          'val_acc_history': val_acc_history,
        }

    def predict(self, X):
        """
        Use the trained weights of this two-layer network to predict labels for
        data points. For each data point we predict scores for each of the C
        classes, and assign each data point to the class with the highest score.

        Inputs:
        - X: A numpy array of shape (N, D) giving N D-dimensional data points to
          classify.

        Returns:
        - y_pred: A numpy array of shape (N,) giving predicted labels for each of
          the elements of X. For all i, y_pred[i] = c means that X[i] is predicted
          to have class c, where 0 <= c < C.
        """
        y_pred = None

        ###########################################################################
        # TODO: Implement this function; it should be VERY simple!                #
        ###########################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        h = np.maximum(0,X.dot(self.params['W1'])+self.params['b1'])
        scores = h.dot(self.params['W2'])+self.params['b2']
        y_pred = np.argmax(scores,axis=1)

        #pass

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        return y_pred

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这部分运行非常慢,建议大家在循环内部或其他需要的地方增加几个print,以便观察内部运行情况在这里插入图片描述
在这里插入图片描述
最后,可看出我们只使用了一个隐层的情况下准确率达到了51.7%,要远优于前几节的算法。至此,大家应该可以感受到神经网络的强大。学习之余,也推荐大家去看一下我们这门课的主讲人——李飞飞教授的故事,也许会对这个领域有更进一步的认识。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值