- 第一章 介绍
- 第二章 概率分布
- 第三章 线性回归模型
- 第四章 线性分类模型
- 第五章 神经网络
- 第六章 内核方法:双重表征、构造内核、径向基函数网络、高斯过程
- 第七章 稀疏内核机器:最大边距分类器、相关向量机
- 第八章 图形模型:贝叶斯网络、条件独立、马尔科夫随机场、图形模型中的推理
- 第九章 混合模型和EM:K-means聚类、高斯混合、EM算法
- 第十章 近似推断
- 第十一章 采样方法
- 第十二章 连续潜在变量
- 第十三章 顺序数据
- 第十四章 组合模型
PRML、机器学习、模式识别和统计学习方法这四本书对比着看
最新推荐文章于 2024-09-09 09:43:39 发布