PRML、机器学习、模式识别和统计学习方法这四本书对比着看

本文详细介绍了PRML(概率机器学习)中的核心概念,涵盖了从概率分布到线性回归、分类模型、神经网络、内核方法、稀疏内核机器、图形模型、混合模型和EM算法等主题,深入探讨了机器学习中的各种模型和推断技术,为读者提供了全面的理论基础和实践指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PRML:

  • 第一章 介绍
  • 第二章 概率分布
  • 第三章 线性回归模型
  • 第四章 线性分类模型
  • 第五章 神经网络
  • 第六章 内核方法:双重表征、构造内核、径向基函数网络、高斯过程
  • 第七章 稀疏内核机器:最大边距分类器、相关向量机
  • 第八章 图形模型:贝叶斯网络、条件独立、马尔科夫随机场、图形模型中的推理
  • 第九章 混合模型和EM:K-means聚类、高斯混合、EM算法
  • 第十章 近似推断
  • 第十一章 采样方法
  • 第十二章 连续潜在变量
  • 第十三章 顺序数据
  • 第十四章 组合模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值