关于训练模型时num_workers和batch_size的设置匹配

我的cpu是i7,gpu是4090d,之前跑代码一直会蓝屏,按照网上的意见调低batch_size和num_workers。发现batch_size越低,cpu占用率越高,而gpu占用率百分之一都不到。

我的想法是batch_size调低,gpu处理一次batch就更加轻松,对下一个batch的需求就更加渴望,那么负责dataloader的cpu就会不停歇地处理和加载数据喂给gpu。所以干脆把batch_size拉到很高,让gpu处理一批数据的速度不要太快,那么cpu加载数据也就更加游刃有余。按照这个想法,果然cpu的占用率降了特别多,而且训练速度更快了。

接下来我会给出一段代码,请理解这段代码的逻辑,并且仿照其将其改变为医疗图像分析 代码如下: from __future__ import print_function, division import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torch.utils.data import Dataset from torchvision import transforms, datasets, models from Dataloader import DogCatDataSet # 配置参数 random_state = 1 torch.manual_seed(random_state) # 设置随机数种子,确保结果可重复 torch.cuda.manual_seed(random_state) torch.cuda.manual_seed_all(random_state) np.random.seed(random_state) # random.seed(random_state) epochs = 30 # 训练次数 batch_size = 16 # 批处理大小 num_workers = 4 # 多线程的数目 use_gpu = torch.cuda.is_available() # 对加载的图像作归一化处理, 并裁剪为[224x224x3]大小的图像 data_transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), ]) train_dataset = DogCatDataSet(img_dir="/mnt/d/深度学习1/train", transform=data_transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) test_dataset = DogCatDataSet(img_dir="/mnt/d/深度学习1/test", transform=data_transform) test_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4) # 加载resnet18 模型, net = models.resnet18(pretrained=False) num_ftrs = net.fc.in_features net.fc = nn.Linear(num_ftrs, 2) if use_gpu: net = net.cuda() print(net) # 定义lossoptimizer cirterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.0001, momentum=0.9) # 开始训练 net.train() for epoch in range(epochs): running_loss = 0.0 train_correct = 0 train_total = 0 for i, data in enumerate(train_loader, 0): inputs, train_labels = data if use_gpu: inputs, labels = Variable(inputs.cuda()), Variable(train_labels.cuda()) else: inputs, labels = Variable(inputs), Variable(train_labels) # inputs, labels = Variable(inputs), Variable(train_labels) optimi
最新发布
04-03
<think>好的,我现在要解决的问题是关于YOLO模型batch sizeworkers参数的关系以及它们的设置方法。首先,我需要回忆一下用户提供的引用内容,看看有没有相关的信息。 根据引用[1][2],workers参数涉及到数据加载的进程数,默认是8。而batch size是一次训练所选取的样本数。引用[3]提到减小batch size可能加快训练速度,但会影响梯度估计的稳定性。同workers的数量batch size设置会影响数据加载的效率。 接下来,我需要理清这两个参数之间的关系。workers负责数据预加载,batch size决定每次迭代处理的样本量。如果workers设置得高,可以更快地将数据准备好,避免训练过程等待数据。而batch size的大小会影响显存的使用,较大的batch size需要更多显存,但可能提高训练效率,不过太大也可能导致内存不足。 用户的问题是如何设置这两个参数以及它们的相互影响。根据引用中的信息,可能需要考虑硬件配置,比如CPU核心数GPU显存。例如,workers不应超过CPU核心数,而batch size需要根据显存调整。 此外,引用[3]提到,较小的batch size可能导致训练间增加,但有可能加快速度,这似乎矛盾。可能需要解释这是因为每个epoch的迭代次数变多,但每次迭代处理的数据量减少,所以总体间可能增加,但小batch size可能有助于梯度更新更频繁,从而在某些情况下收敛更快。 然后,我需要总结设置建议:workers通常设为CPU核心数或略低,batch size在显存允许下尽可能大,但需要平衡稳定性速度。可能需要分步骤说明如何调整这两个参数,比如先确定最大batch size,再调整workers。 最后,要生成相关问题,可能涉及如何根据硬件调整参数,常见错误,性能优化方法等。</think>### YOLO中batch sizeworkers参数的关系及设置方法 #### 1. 核心概念定义 - **Batch Size**:单次训练迭代中使用的样本数量,直接影响显存占用梯度计算稳定性。例如$batch=32$表示每次迭代处理32张图像[^3]。 - **Workers**:数据加载使用的子进程数量,用于并行预处理加载数据到内存。代码中默认设置为$workers=8$[^2]。 #### 2. 参数关系解析 $$ \text{训练效率} \propto \frac{\text{Batch Size}}{\text{单样本处理间}} \times \min(\text{Workers}, \text{CPU核心数}) $$ - **互补作用**:较大的$batch\ size$需要更高$workers$来保证数据供给不中断。若$workers$不足,GPU可能因等待数据而空闲。 - **硬件限制**: - $batch\ size$上限由GPU显存决定,公式:$$batch_{max} = \frac{\text{可用显存} - \text{模型占用量}}{\text{单样本显存需求}}$$ - $workers$最大值通常为CPU逻辑核心数的$70\%-80\%$[^1] #### 3. 参数设置步骤 1. **确定batch size上限**: - 逐步增加$batch$直到出现`CUDA out of memory`错误 - 示例:RTX 3090 (24GB)训练YOLOv5s,通常可设$batch=16-64$ 2. **优化workers**: - Linux系统:使用`nproc`查询CPU核心数,设$workers=cores \times 2$ - Windows系统:设$workers=4-8$(受限于系统进程调度机制) ```python # 实际设置参考(train.py参数示例) python train.py --batch 64 --workers 12 ``` 3. **监控验证**: - 使用`nvidia-smi`观察GPU利用率:理想状态应持续>90% - 若GPU利用率波动大,可能需增加$workers$ #### 4. 典型问题与解决方案 | 现象 | 原因分析 | 调整方案 | |---------------------|-------------------------|---------------------------| | 训练速度慢但GPU利用率低 | 数据供给瓶颈 | 增加$workers$或使用SSD存储 | | 出现内存不足(OOM)错误 | $batch\ size$过大 | 按2的倍数逐步减小$batch$ | | 训练过程卡顿 | $workers$过高导致资源争抢 | 降低$workers$至核心数50% | #### 5. 高级优化技巧 - **自动批处理**:YOLOv8支持`batch=-1`的自动模式,系统会探测显存后动态调整 - **梯度累积**:当显存不足,可通过小$batch$+多步累积梯度模拟大$batch$效果: $$effective\_batch = batch \times accumulate\_steps$$ - **混合精度训练**:使用`--half`参数可减少显存占用,通常允许$batch$增大1.5-2倍 [^1]: 关于yolov5训练参数workersbatch-size的理解 [^2]: yolov5训练参数workersbatch-size的常见问题 : YOLO模型训练批次大小的选择注意事项
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值